Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-cost biometric recognition system based on NIR palm vein image

Palm vein recognition is motivated by the advantages of high security and liveness detection, but its popularity is prevented by the cost of palm vein capture devices. This study proposes a low-cost and practical palm vein recognition system. First, the authors’ system captures near-infrared (NIR) palm vein image with complementary metal–oxide–semiconductor camera in lieu of an NIR charge-coupled device camera. The goal is to reduce the cost of palm vein capture devices greatly. Second, this study adopts thenar area on the palm as the region of interest (ROI) for further palm vein recognition. The goal is to get the rich vessel and avoid the effect of palmprint. Finally, the discriminate palm vein features are extracted based on Haar-wavelet decomposition and partial least squares algorithm on the ROI image. The goal is to increase the recognition accuracy, though the resolution of the image is low. A database with 1500 palm vein images from 250 samples is setup with the capture device. Experiments in the self-built database and a public database show the effectiveness of the scheme.

References

    1. 1)
      • 13. Verma, D., Dubey, S.: ‘Processing and enhancement of palm vein image in vein pattern recognition system’, Int. J. Comput. Sci. Mob. Comput, 2015, 4, (4), pp. 137141.
    2. 2)
      • 17. Savitha, A.P., Ramegowda, : ‘A comparative study of palm vein feature extraction and classification’, Mater. Today Proc., 2017, 4, (11), pp. 1188211887.
    3. 3)
      • 23. Su, G.Z., Xie, Z.J., Gao, J.T.: ‘Study on applied anatomy of veins of hands’, J. Harbin Med. Univ., 2005, 39, (5), pp. 425426.
    4. 4)
      • 5. Wang, J.G., Yau, W.Y., Suwandy, A., et al: ‘Person recognition by fusing palmprint and palm vein images based on ‘Laplacian palm’ representation’, Pattern Recognit., 2008, 41, (5), pp. 15141527.
    5. 5)
      • 39. Wu, W., Yuan, W.Q, Lin, S., et al: ‘Fast palm vein identification algorithm based on grayscale surface matching’, Acta Opt. Sin., 2013, 33, (10), p. 1015004.
    6. 6)
      • 16. Chen, H., Lu, G., Wang, R.: ‘A new palm vein matching method based on ICP algorithm’. Second Proc. Int. Conf. Interaction Sciences: Information Technology, Culture and Human, Seoul, Korea, November 2009, pp. 12071211.
    7. 7)
      • 1. MacGregor, P., Welford, R.: ‘Vein check: imaging for security and personnel identification’, Adv. Imaging, 1991, 6, (7), pp. 5256.
    8. 8)
      • 27. Dini, F., Dadang, G.: ‘Palm vein recognition by using modified of local binary pattern (LBP) for extraction feature’. Proc. 15th Int. Conf. Quality in Research (QiR) – Int. Symp. Electrical and Computer Engineering, Nusa Dua, Indonesia, July 2017, pp. 1822.
    9. 9)
      • 8. Mirmohamadsadeghi, L., Drygajlo, A.: ‘Palm vein recognition with local texture patterns’, IET Biometrics, 2014, 3, (4), pp. 198206.
    10. 10)
      • 38. Alzubaidi, A., Kalita, J.: ‘Authentication of smartphone users using behavioral biometrics’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 19982026.
    11. 11)
      • 20. Cao, J., Xu, M., Shi, W., et al: ‘Mypalm vein: a palm vein-based low-cost mobile identification system for wide age range’. 2015 17th Int. Conf. E-health Networking, Application & Services (Health Com), Boston, USA, October 2015, pp. 292297.
    12. 12)
      • 28. Cancian, P., Di Donato, G.W., Rana, V., et al: ‘An embedded gabor-based palm vein recognition system’. 2017 IEEE EMBS Int. Conf. Biomedical & Health Informatics (BHI), Orlando, FL, USA, February 2017, pp. 405408.
    13. 13)
      • 29. Kang, W.X., Liu, Y., Wu, Q., et al: ‘Contact-free palm-vein recognition based on local invariant features’, PLOS One, 2014, 9, (5), p. e97548.
    14. 14)
      • 34. Salari, E., Ling, Z.: ‘Texture segmentation using hierarchical wavelet decomposition’, Pattern Recognit., 1995, 28, (12), pp. 18191824.
    15. 15)
      • 21. Raghavendra, R., Busch, C.: ‘A low cost wrist vein sensor for biometric authentication’. 2016 IEEE Int. Conf. Imaging Systems and Techniques (IST), Chania, Greece, October 2016, pp. 201205.
    16. 16)
      • 36. Tome, P., Marcel, S.: ‘Palm vein database and experimental framework for reproducible research’. Proc. 2015 Int. Conf. Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, September 2015, pp. 17.
    17. 17)
      • 2. Arakala, A., Davis, S.A., Hao, H., et al: ‘Value of graph topology in vascular biometrics’, IET Biometrics, 2016, 6, (2), pp. 117125.
    18. 18)
      • 24. Lee, E.C., Park, K.R.: ‘Image restoration of skin scattering and optical blurring for finger vein recognition’, Opt. Lasers Eng., 2011, 49, (7), pp. 816828.
    19. 19)
      • 19. Michael, G.K.O., Connie, T., Hoe, L.S., et al: ‘Design and implementation of a contactless palm vein recognition system’. Proc. Symp. Information and Communication Technology, Hanoi, Vietnam, August 2010, pp. 9299.
    20. 20)
      • 18. Zhou, Y., Kumar, A.: ‘Contactless palm vein identification using multiple representations’. Fourth IEEE Int. Conf. Biometrics: Theory Applications and Systems, Washington, D.C., USA, September 2010, pp. 16.
    21. 21)
      • 12. Lee, J.C.: ‘A novel biometric system based on palm vein image’. Pattern Recognit. Lett., 2012, 33, (12), pp. 15201528.
    22. 22)
      • 31. Rännar, S., Lindgren, F., Geladi, P., et al: ‘A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm’, J. Chemom., 1994, 8, (2), pp. 111125.
    23. 23)
      • 9. Ma, X., Jing, X., Huang, H., et al: ‘Palm vein recognition scheme based on an adaptive gabor filter’, IET Biometrics, 2016, 6, (5), pp. 325333.
    24. 24)
      • 7. Kang, W., Wu, Q.: ‘Contactless palm vein recognition using a mutual foreground-based local binary pattern’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (11), pp. 19741985.
    25. 25)
      • 14. Santis, M.D., Agnelli, S.: ‘3D ultrasound palm vein recognition through the centroid method for biometric purposes’. 2017 IEEE Int. Ultrasonics Symp. (IUS), Washington, D.C., USA, September 2017, pp. 14.
    26. 26)
      • 33. Bhowmick, A., Chandra, M.: ‘Speech enhancement using voiced speech probability based wavelet decomposition’, Comput. Electr. Eng., 2017, 62, pp. 706718.
    27. 27)
      • 15. Zhang, Y.B., Li, Q., You, J., et al: ‘Palm vein extraction and matching for personal authentication’, Adv. Vis. Inf., 2007, 4781, pp. 154164.
    28. 28)
      • 37. Kabacinski, R., Kowalski, M.: ‘Vein pattern database and benchmark results’, Electron. Lett., 2011, 47, (20), pp. 11271128.
    29. 29)
      • 6. Yan, X., Kang, W., Deng, F., et al: ‘Palm vein recognition based on multi-sampling and feature-level fusion’, Neurocomputing, 2015, 151, pp. 798807.
    30. 30)
      • 26. Wu, K.S., Lee, J.C., Lo, T.M., et al: ‘A secure palm vein recognition system’, J. Syst. Softw., 2013, 86, (11), pp. 28702876.
    31. 31)
      • 22. Pan, F.Y., Tian, W.C., Zou, Y.W.: ‘Micro-dissection study of palmaris vena superficialis’, Chin. J. Pract. Hand Surg., 2004, 1, p. 22.
    32. 32)
      • 11. Al-juboori, A.M., Bu, W., Wu, X., et al: ‘Palm vein verification using gabor filter’, Int. J. Comput. Sci. Issues, 2013, 10, (1), pp. 678684.
    33. 33)
      • 25. Li, Q, Zeng, Y, Peng, X, et al: ‘Curvelet-based palm vein biometric recognition’, Chin. Opt. Lett., 2010, 8, (6), pp. 577579.
    34. 34)
      • 35. Ma, L., Staunton, R.C.: ‘Analysis of the contour structural irregularity of skin lesions using wavelet decomposition’, Pattern Recognit., 2013, 46, (1), pp. 98106.
    35. 35)
      • 3. Zhou, Y., Kumar, A.: ‘Human identification using palm-vein images’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (4), pp. 12591274.
    36. 36)
      • 10. Wang, R., Wang, G., Chen, Z., et al: ‘A palm vein identification system based on gabor wavelet features’, Neural Comput. Appl., 2014, 24, (1), pp. 161168.
    37. 37)
      • 30. Pan, M., Kang, W.: ‘Palm vein recognition based on three local invariant feature extraction algorithms’. Proc. Chinese Conf. Biometric Recognition (CCBR 2011), Beijing, China, 3–4 December 2011, pp. 116124.
    38. 38)
      • 4. Lee, Y.P.: ‘Palm vein recognition based on a modified (2D) 2LDA’, Signal Image Video Process., 2015, 9, (1), pp. 229242.
    39. 39)
      • 32. Zhang, D., Jing, X., Yang, J.: ‘Solutions of LDA for small sample size problems’, biometric image discrimination technologies’ (Idea Group Publishing, Hershey, USA, 2006), pp. 156160.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5027
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address