http://iet.metastore.ingenta.com
1887

Low-cost biometric recognition system based on NIR palm vein image

Low-cost biometric recognition system based on NIR palm vein image

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Palm vein recognition is motivated by the advantages of high security and liveness detection, but its popularity is prevented by the cost of palm vein capture devices. This study proposes a low-cost and practical palm vein recognition system. First, the authors’ system captures near-infrared (NIR) palm vein image with complementary metal–oxide–semiconductor camera in lieu of an NIR charge-coupled device camera. The goal is to reduce the cost of palm vein capture devices greatly. Second, this study adopts thenar area on the palm as the region of interest (ROI) for further palm vein recognition. The goal is to get the rich vessel and avoid the effect of palmprint. Finally, the discriminate palm vein features are extracted based on Haar-wavelet decomposition and partial least squares algorithm on the ROI image. The goal is to increase the recognition accuracy, though the resolution of the image is low. A database with 1500 palm vein images from 250 samples is setup with the capture device. Experiments in the self-built database and a public database show the effectiveness of the scheme.

References

    1. 1)
      • 1. MacGregor, P., Welford, R.: ‘Vein check: imaging for security and personnel identification’, Adv. Imaging, 1991, 6, (7), pp. 5256.
    2. 2)
      • 2. Arakala, A., Davis, S.A., Hao, H., et al: ‘Value of graph topology in vascular biometrics’, IET Biometrics, 2016, 6, (2), pp. 117125.
    3. 3)
      • 3. Zhou, Y., Kumar, A.: ‘Human identification using palm-vein images’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (4), pp. 12591274.
    4. 4)
      • 4. Lee, Y.P.: ‘Palm vein recognition based on a modified (2D) 2LDA’, Signal Image Video Process., 2015, 9, (1), pp. 229242.
    5. 5)
      • 5. Wang, J.G., Yau, W.Y., Suwandy, A., et al: ‘Person recognition by fusing palmprint and palm vein images based on ‘Laplacian palm’ representation’, Pattern Recognit., 2008, 41, (5), pp. 15141527.
    6. 6)
      • 6. Yan, X., Kang, W., Deng, F., et al: ‘Palm vein recognition based on multi-sampling and feature-level fusion’, Neurocomputing, 2015, 151, pp. 798807.
    7. 7)
      • 7. Kang, W., Wu, Q.: ‘Contactless palm vein recognition using a mutual foreground-based local binary pattern’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (11), pp. 19741985.
    8. 8)
      • 8. Mirmohamadsadeghi, L., Drygajlo, A.: ‘Palm vein recognition with local texture patterns’, IET Biometrics, 2014, 3, (4), pp. 198206.
    9. 9)
      • 9. Ma, X., Jing, X., Huang, H., et al: ‘Palm vein recognition scheme based on an adaptive gabor filter’, IET Biometrics, 2016, 6, (5), pp. 325333.
    10. 10)
      • 10. Wang, R., Wang, G., Chen, Z., et al: ‘A palm vein identification system based on gabor wavelet features’, Neural Comput. Appl., 2014, 24, (1), pp. 161168.
    11. 11)
      • 11. Al-juboori, A.M., Bu, W., Wu, X., et al: ‘Palm vein verification using gabor filter’, Int. J. Comput. Sci. Issues, 2013, 10, (1), pp. 678684.
    12. 12)
      • 12. Lee, J.C.: ‘A novel biometric system based on palm vein image’. Pattern Recognit. Lett., 2012, 33, (12), pp. 15201528.
    13. 13)
      • 13. Verma, D., Dubey, S.: ‘Processing and enhancement of palm vein image in vein pattern recognition system’, Int. J. Comput. Sci. Mob. Comput, 2015, 4, (4), pp. 137141.
    14. 14)
      • 14. Santis, M.D., Agnelli, S.: ‘3D ultrasound palm vein recognition through the centroid method for biometric purposes’. 2017 IEEE Int. Ultrasonics Symp. (IUS), Washington, D.C., USA, September 2017, pp. 14.
    15. 15)
      • 15. Zhang, Y.B., Li, Q., You, J., et al: ‘Palm vein extraction and matching for personal authentication’, Adv. Vis. Inf., 2007, 4781, pp. 154164.
    16. 16)
      • 16. Chen, H., Lu, G., Wang, R.: ‘A new palm vein matching method based on ICP algorithm’. Second Proc. Int. Conf. Interaction Sciences: Information Technology, Culture and Human, Seoul, Korea, November 2009, pp. 12071211.
    17. 17)
      • 17. Savitha, A.P., Ramegowda, : ‘A comparative study of palm vein feature extraction and classification’, Mater. Today Proc., 2017, 4, (11), pp. 1188211887.
    18. 18)
      • 18. Zhou, Y., Kumar, A.: ‘Contactless palm vein identification using multiple representations’. Fourth IEEE Int. Conf. Biometrics: Theory Applications and Systems, Washington, D.C., USA, September 2010, pp. 16.
    19. 19)
      • 19. Michael, G.K.O., Connie, T., Hoe, L.S., et al: ‘Design and implementation of a contactless palm vein recognition system’. Proc. Symp. Information and Communication Technology, Hanoi, Vietnam, August 2010, pp. 9299.
    20. 20)
      • 20. Cao, J., Xu, M., Shi, W., et al: ‘Mypalm vein: a palm vein-based low-cost mobile identification system for wide age range’. 2015 17th Int. Conf. E-health Networking, Application & Services (Health Com), Boston, USA, October 2015, pp. 292297.
    21. 21)
      • 21. Raghavendra, R., Busch, C.: ‘A low cost wrist vein sensor for biometric authentication’. 2016 IEEE Int. Conf. Imaging Systems and Techniques (IST), Chania, Greece, October 2016, pp. 201205.
    22. 22)
      • 22. Pan, F.Y., Tian, W.C., Zou, Y.W.: ‘Micro-dissection study of palmaris vena superficialis’, Chin. J. Pract. Hand Surg., 2004, 1, p. 22.
    23. 23)
      • 23. Su, G.Z., Xie, Z.J., Gao, J.T.: ‘Study on applied anatomy of veins of hands’, J. Harbin Med. Univ., 2005, 39, (5), pp. 425426.
    24. 24)
      • 24. Lee, E.C., Park, K.R.: ‘Image restoration of skin scattering and optical blurring for finger vein recognition’, Opt. Lasers Eng., 2011, 49, (7), pp. 816828.
    25. 25)
      • 25. Li, Q, Zeng, Y, Peng, X, et al: ‘Curvelet-based palm vein biometric recognition’, Chin. Opt. Lett., 2010, 8, (6), pp. 577579.
    26. 26)
      • 26. Wu, K.S., Lee, J.C., Lo, T.M., et al: ‘A secure palm vein recognition system’, J. Syst. Softw., 2013, 86, (11), pp. 28702876.
    27. 27)
      • 27. Dini, F., Dadang, G.: ‘Palm vein recognition by using modified of local binary pattern (LBP) for extraction feature’. Proc. 15th Int. Conf. Quality in Research (QiR) – Int. Symp. Electrical and Computer Engineering, Nusa Dua, Indonesia, July 2017, pp. 1822.
    28. 28)
      • 28. Cancian, P., Di Donato, G.W., Rana, V., et al: ‘An embedded gabor-based palm vein recognition system’. 2017 IEEE EMBS Int. Conf. Biomedical & Health Informatics (BHI), Orlando, FL, USA, February 2017, pp. 405408.
    29. 29)
      • 29. Kang, W.X., Liu, Y., Wu, Q., et al: ‘Contact-free palm-vein recognition based on local invariant features’, PLOS One, 2014, 9, (5), p. e97548.
    30. 30)
      • 30. Pan, M., Kang, W.: ‘Palm vein recognition based on three local invariant feature extraction algorithms’. Proc. Chinese Conf. Biometric Recognition (CCBR 2011), Beijing, China, 3–4 December 2011, pp. 116124.
    31. 31)
      • 31. Rännar, S., Lindgren, F., Geladi, P., et al: ‘A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm’, J. Chemom., 1994, 8, (2), pp. 111125.
    32. 32)
      • 32. Zhang, D., Jing, X., Yang, J.: ‘Solutions of LDA for small sample size problems’, biometric image discrimination technologies’ (Idea Group Publishing, Hershey, USA, 2006), pp. 156160.
    33. 33)
      • 33. Bhowmick, A., Chandra, M.: ‘Speech enhancement using voiced speech probability based wavelet decomposition’, Comput. Electr. Eng., 2017, 62, pp. 706718.
    34. 34)
      • 34. Salari, E., Ling, Z.: ‘Texture segmentation using hierarchical wavelet decomposition’, Pattern Recognit., 1995, 28, (12), pp. 18191824.
    35. 35)
      • 35. Ma, L., Staunton, R.C.: ‘Analysis of the contour structural irregularity of skin lesions using wavelet decomposition’, Pattern Recognit., 2013, 46, (1), pp. 98106.
    36. 36)
      • 36. Tome, P., Marcel, S.: ‘Palm vein database and experimental framework for reproducible research’. Proc. 2015 Int. Conf. Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, September 2015, pp. 17.
    37. 37)
      • 37. Kabacinski, R., Kowalski, M.: ‘Vein pattern database and benchmark results’, Electron. Lett., 2011, 47, (20), pp. 11271128.
    38. 38)
      • 38. Alzubaidi, A., Kalita, J.: ‘Authentication of smartphone users using behavioral biometrics’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 19982026.
    39. 39)
      • 39. Wu, W., Yuan, W.Q, Lin, S., et al: ‘Fast palm vein identification algorithm based on grayscale surface matching’, Acta Opt. Sin., 2013, 33, (10), p. 1015004.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5027
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address