Low-resolution face recognition and the importance of proper alignment

Low-resolution face recognition and the importance of proper alignment

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Face recognition methods for low resolution are often developed and tested on down-sampled images instead of on real low-resolution images. Although there is a growing awareness that down-sampled and real low-resolution images are different, few efforts have been made to analyse the differences in recognition performance. Here, the authors explore the differences and demonstrate that alignment is a major cause, especially in the absence of pose and illumination variations. The authors found that the recognition performances on down-sampled images are flattered mostly due to the fact that the images are perfectly aligned before down-sampling using high-resolution landmarks, while the real low-resolution images have much poorer alignment. To obtain better alignment for real low-resolution images, the authors apply matching score-based registration which does not rely on accurate landmarks. The authors propose to divide low resolution into three ranges to harmonise the terminology: upper low resolution (ULR), moderately low resolution (MLR), and very low resolution (VLR). Most face recognition methods perform well on ULR. MLR is a challenge for commercial systems, but a low-resolution deep-learning method can handle it very well. The performance of most methods degrades significantly for VLR, except for simple holistic methods which perform the best.

Related content

This is a required field
Please enter a valid email address