access icon free Active detection of age groups based on touch interaction

This article studies user classification into children and adults according to their interaction with touchscreen devices. The authors analyse the performance of two sets of features derived from the sigma-lognormal theory of rapid human movements and global characterisation of touchscreen interaction. The authors propose an active detection approach aimed to continuously monitor the user patterns. The experimentation is conducted on a publicly available database with samples obtained from 89 children between 3 and 6 years old and 30 adults. The authors have used support vector machines algorithm to classify the resulting features into age groups. The sets of features are fused at the score level using data from smartphones and tablets. The results, with correct classification rates over 96%, show the discriminative ability of the proposed neuromotor-inspired features to classify age groups according to the interaction with touch devices. In the active detection set-up, the authors’ method is able to identify a child using only four gestures in average.

Inspec keywords: smart phones; signal classification; touch sensitive screens; support vector machines; paediatrics; feature extraction

Other keywords: touchscreen devices; touch devices; global characterisation; age groups; correct classification rates; user classification; touch interaction; active detection approach; neuromotor-inspired features; support vector machines; sigma-lognormal theory; touchscreen interaction

Subjects: Digital signal processing; Knowledge engineering techniques; Signal processing and detection

References

    1. 1)
      • 5. Kabali, H. K., Irigoyen, M.M., Nunez-Davis, R., et al: ‘Exposure and use of mobile media devices by young children’, Pediatrics, 2015, 136, (6), pp. 10441050.
    2. 2)
      • 26. Meulenbroek, R., VanGalen, P.G.: ‘The acquisition of skilled handwriting: discontinuous trends in kinematic variables’, in Colley, A.M., Beechs, J.R. (eds.): ‘Cognition and action in skilled behavior’ (North Holland, Amsterdam, 1998), pp. 273281.
    3. 3)
      • 4. Morales, A., Fierrez, J., Tolosana, R., et al: ‘Keystroke biometrics ongoing competition’, IEEE Access, 2016, 4, pp. 77367746.
    4. 4)
      • 25. Duval, T., Rémi, C., Plamondon, R., et al: ‘Combining sigma-lognormal modeling and classical features for analyzing graphomotor performances in kindergarten children’, Hum. Mov. Sci., 2015, 43, pp. 183200.
    5. 5)
      • 17. Fierrez, J., Ortega-Garcia, J.: ‘On-line signature verification’, in ‘Handbook of biometrics’ (Springer-Verlag, Germany Berlin, 2008), pp. 189209.
    6. 6)
      • 18. Hernandez-Ortega, J., Morales, A., Fierrez, J., et al: ‘Detecting age groups using touch interaction based on neuromotor characteristics’, IET Electron. Lett., 2017, 53, (20), pp. 13491350.
    7. 7)
      • 2. Youtube, Youtube statistics’. Available from https://about.twitter.com/company, retrieved 13 September 2016.
    8. 8)
      • 20. Vatavu, R.-D., Anthony, L., Brown, Q.: ‘Child or adult? Inferring smartphone users age group from touch measurements alone’, in ‘Human–computer interaction’ (Springer, Cham, Switzerland, 2015), pp. 19.
    9. 9)
      • 6. Perera, P., Patel, V.M.: ‘Efficient and low latency detection of intruders in mobile active authentication’, IEEE Trans. Inf. Forensics Sec., 2018, 13, (6), pp. 13921405.
    10. 10)
      • 29. Martinez-Diaz, M., Fierrez, J., Hangai, S.: ‘Signature features’, in ‘Encyclopedia of biometrics’ (Springer, Boston, MA, 2015), pp. 13751382.
    11. 11)
      • 23. Galbally, J., Plamondon, R., Fierrez, J.: ‘Synthetic on-line signature generation. Part I: methodology and algorithms’, Pattern Recognit., 2012, 45, pp. 26102621.
    12. 12)
      • 3. BBA: Mobile phone apps become the UK's number one way to bank’. Available from https://www.bba.org.uk/news/pressreleases/mobile-phone-apps-become-the-uks-numberone-way-to-bank, retrieved 13 September 2016.
    13. 13)
      • 27. Serwadda, A., Phoha, V.V., Wang, Z.: ‘Which verifiers work?: a benchmark evaluation of touch-based authentication algorithms’. Proc. of IEEE BTAS, Washington DC, USA, 2013, pp. 18.
    14. 14)
      • 11. Anthony, L., Brown, Q., Nias, J., et al: ‘Interaction and recognition challenges in interpreting children's touch and gesture input on mobile devices’. Proc. of the 2012 ACM Int. Conf. Interactive tabletops and surfaces, ACM, Cambridge, MA, USA, 2012, pp. 225234.
    15. 15)
      • 15. Bevan, C., Fraser, D.S.: ‘Different strokes for different folks? Revealing the physical characteristics of smartphone users from their swipe gestures’, Int. J. Human-Comput. Stud., 2016, 88, pp. 5161.
    16. 16)
      • 12. Piaget, J., Inhelder, B.: ‘The psychology of the child’ (Basic Books, France, 1969), 5001).
    17. 17)
      • 28. Martinez-Diaz, M., Fierrez, J., Krish, R.P., et al: ‘Mobile signature verification: feature robustness and performance comparison’, IET Biometrics, 2014, 3, (4), pp. 267277.
    18. 18)
      • 10. Aziz, N.A.A., Batmaz, F., Stone, R., et al: ‘Selection of touch gestures for children's applications’. Proc. of Science and Information Conf., IEEE, 2013, pp. 721726.
    19. 19)
      • 22. Plamondon, R., O'Reilly, C., Remi, C., et al: ‘The lognormal handwriter: learning, performing, and declining’, Front. Psychol., 2013, 4, pp. 945:1945:14.
    20. 20)
      • 19. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., et al: ‘Benchmarking desktop and mobile handwriting across COTS devices: the e-BioSign biometric database’, PLOS ONE, 2017, 12, (5), pp. 117.
    21. 21)
      • 30. Fierrez, J., Pozo, A., Martinez-Diaz, M., et al: ‘Benchmarking touchscreen biometrics for mobile authentication, IEEE Trans. Inf. Forensics Sec., 2018, 13, (11), pp. 27202733.
    22. 22)
      • 8. Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., et al: ‘Facial soft biometrics for recognition in the wild: recent works, annotation and COTS evaluation’, IEEE Trans. Inf. Forensics Sec., 2018, 13, (8), pp. 20012014.
    23. 23)
      • 24. Ferrer, M.A., Diaz-Cabrera, M., Morales, A.: ‘Static signature synthesis: a neuromotor inspired approach for biometrics’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 667680.
    24. 24)
      • 16. Vatavu, R.-D., Cramariuc, G., Schipor, D.M.: ‘Touch interaction for children aged 3 to 6 years: experimental findings and relationship to motor skills’, Int. J. Human-Comput. Stud., 2015, 74, pp. 5476.
    25. 25)
      • 13. O'Reilly, C., Plamondon, R.: ‘Development of a sigma–lognormal representation for on-line signatures’, Pattern Recognit., 2009, 42, (12), pp. 33243337.
    26. 26)
      • 7. Patel, V.M., Chellappa, R., Chandra, D., et al: ‘Continuous user authentication on mobile devices: recent progress and remaining’, IEE Signal Process. Mag., 2016, 33, (4), pp. 4961.
    27. 27)
      • 14. AL-Showarah, S., AL-Jawad, N., Sellahewa, H.: ‘User-age classification using touch gestures on smartphones’, Int. J. Multidiscip. Stud., 2015, 2, (1), pp. 97109.
    28. 28)
      • 9. Cassidy, B., McKnight, L.: ‘Children's interaction with mobile touch-screen devices: experiences and guidelines for design’, Int. J. Mob. Hum. Comput. Interact., 2010, 2, pp. 118.
    29. 29)
      • 31. Fierrez, J., Morales, A., Vera-Rodriguez, R., et al: ‘Multiple classifiers in biometrics. Part 1: Fundamentals and review’, Information Fusion, 2018, 44, pp. 5764.
    30. 30)
      • 1. CDS, Crystal Display System Ltd’. Available from http://crystal-display.com/touchscreen-market-growing-10-times-faster-than-other-displays/, retrieved 10 September 2017.
    31. 31)
      • 21. Fischer, A., Plamondon, A.: ‘A dissimilarity measure for on-line signature verification based on the sigmalognormal model’. Proc. of 17th Biennial Conf. of the Int. Graphonomics Society, Pointe-a-Pitre, Guadeloupe, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5003
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading