http://iet.metastore.ingenta.com
1887

Survey on features for fingerprint indexing

Survey on features for fingerprint indexing

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nowadays, several biometric databases already contain millions of entries of individuals. With an increasing number of enrolled individuals, the response time of queries grows and can become critical. Fingerprint indexing offers a set of techniques to reduce the workload of entries, which have to be compared thoroughly. This work surveys research on such techniques. It focuses on the features of fingerprints, which are used as input. This survey also provides an assessment of the quality of the body of research in this field. Deficiencies herein are identified, e.g. there is a lack of common datasets and metrics used for testing.

References

    1. 1)
      • 1. Daugman, J.: ‘How iris recognition works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    2. 2)
      • 2. Turk, M.A., Pentland, A.P.: ‘Face recognition using eigenfaces’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition 1991. Proc. CVPR'91, Lahaina, USA, 1991, pp. 586591.
    3. 3)
      • 3. Dantcheva, A., Elia, P., Ross, A.: ‘What else does your biometric data reveal? A survey on soft biometrics’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (3), pp. 441467.
    4. 4)
      • 4. Bai, C., Zhao, T., Wang, W., et al: ‘An efficient indexing scheme based on k-plet representation for fingerprint database’. Int. Conf. Intelligent Computing, Fuzhou, China, 2015, pp. 247257.
    5. 5)
      • 5. Bai, C., Wang, W., Zhao, T., et al: ‘Learning compact binary quantization of minutia cylinder code’. 2016 Int. Conf. Biometrics (ICB), Halmstad, Sweden, 2016, pp. 16.
    6. 6)
      • 6. Bebis, G., Deaconu, T., Georgiopoulos, M.: ‘Fingerprint identification using Delaunay triangulation’. Proc. 1999 Int. Conf. Information Intelligence and Systems 1999, Bethesda, USA, 1999, pp. 452459.
    7. 7)
      • 7. Benhammadi, F., Amirouche, M., Hentous, H., et al: ‘Fingerprint matching from minutiae texture maps’, Pattern Recognit., 2007, 40, (1), pp. 189197.
    8. 8)
      • 8. Bhanu, B., Tan, X.: ‘Fingerprint indexing based on novel features of minutiae triplets’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 616622.
    9. 9)
      • 9. Biswas, S., Ratha, N.K., Aggarwal, G., et al: ‘Exploring ridge curvature for fingerprint indexing’. Second IEEE Int. Conf. Biometrics: Theory, Applications and Systems, 2008 BTAS 2008, Arlington, USA, 2008, pp. 16.
    10. 10)
      • 10. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Fingerprint indexing based on minutia cylinder-code’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 10511057.
    11. 11)
      • 11. Chen, F., Huang, X., Zhou, J.: ‘Hierarchical minutiae matching for fingerprint and palmprint identification’, IEEE Trans. Image Process., 2013, 22, (12), pp. 49644971.
    12. 12)
      • 12. Germain, R.S., Califano, A., Colville, S.: ‘Fingerprint matching using transformation parameter clustering’, IEEE Comput. Sci. Eng., 1997, 4, (4), pp. 4249.
    13. 13)
      • 13. Gago-Alonso, A., Hernández-Palancar, J., Rodríguez-Reina, E., et al: ‘Indexing and retrieving in fingerprint databases under structural distortions’, Expert Syst. Appl., 2013, 40, (8), pp. 28582871.
    14. 14)
      • 14. Hartloff, J., Dobler, J., Tulyakov, S., et al: ‘Towards fingerprints as strings: secure indexing for fingerprint matching’. 2013 Int. Conf. Biometrics (ICB), Madrid, Spain, 2013, pp. 16.
    15. 15)
      • 15. Iloanusi, O.N.: ‘Fusion of finger types for fingerprint indexing using minutiae quadruplets’, Pattern Recognit. Lett., 2014, 38, pp. 814.
    16. 16)
      • 16. Iqbal, A., Namboodiri, A.M.: ‘Cascaded filtering for biometric identification using random projections’. 2011 National Conf. Communications (NCC), Bangalore, India, 2011, pp. 15.
    17. 17)
      • 17. Jain, A., Prasad, M.V.: ‘Clustering based fingerprint indexing using triangle spiral’. 2015 11th Int. Conf. Signal-Image Technology & Internet-Based Systems (SITIS), Bangkok, Thailand, 2015, pp. 8188.
    18. 18)
      • 18. Jain, A., Prasad, M.: ‘A novel fingerprint indexing scheme using dynamic clustering’, J. Reliab. Intell. Environ., 2016, 2, (3), pp. 159171.
    19. 19)
      • 19. Jayaraman, U., Gupta, A.K., Gupta, P.: ‘An efficient minutiae based geometric hashing for fingerprint database’, Neurocomputing, 2014, 137, pp. 115126.
    20. 20)
      • 20. Khachai, M.Y., Leshko, A., Dremin, A.: ‘The problem of fingerprint identification: a reference database indexing method based on Delaunay triangulation’, Pattern Recognit. Image Anal., 2014, 24, (2), pp. 297303.
    21. 21)
      • 21. Khodadoust, J., Khodadoust, A.M.: ‘Fingerprint indexing based on expanded Delaunay triangulation’, Expert Syst. Appl., 2017, 81, pp. 251267.
    22. 22)
      • 22. Khodadoust, J., Khodadoust, A.M.: ‘Fingerprint indexing based on minutiae pairs and convex core point’, Pattern Recognit., 2017, 67, pp. 110126.
    23. 23)
      • 23. Kovács-Vajna, Z.M.: ‘A fingerprint verification system based on triangular matching and dynamic time warping’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (11), pp. 12661276.
    24. 24)
      • 24. Kumar, D.G., Sudha, G., Revathi, B.: ‘An efficient space partitioning tree approach for indexing and retrieving fingerprint databases’. Proc. 2015 Int. Conf. Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015), Unnao, India, 2015, p. 50.
    25. 25)
      • 25. Le, T.H., Bui, T.D.: ‘A codeword-based indexing scheme for fingerprint identification’. Tenth Int. Conf. Control, Automation, Robotics and Vision, 2008 ICARCV 2008, Hanoi, Vietnam, 2008, pp. 13521356.
    26. 26)
      • 26. Le, T.H.: ‘A fast and distortion tolerant hashing for fingerprint image authentication’. Proc. Int. Workshop on Computational Intelligence in Security for Information Systems CISIS'08, San Sebastián, Spain, 2009, pp. 266273.
    27. 27)
      • 27. Li, G., Yang, B., Busch, C.: ‘A fingerprint indexing scheme with robustness against sample translation and rotation’. 2015 Int. Conf. Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2015, pp. 18.
    28. 28)
      • 28. Li, G., Yang, B., Busch, C.: ‘A fingerprint indexing algorithm on encrypted domain’. IEEE 2016 Trustcom/BigData/SE/I/SPA, Tianjin, China, 2017, pp. 10301037.
    29. 29)
      • 29. Liang, X., Asano, T., Bishnu, A.: ‘Distorted fingerprint indexing using minutia detail and Delaunay triangle’. Third Int. Symp. Voronoi Diagrams in Science and Engineering 2006 ISVD'06, Banff, Canada, 2006, pp. 217223.
    30. 30)
      • 30. Liang, X., Bishnu, A., Asano, T.: ‘A robust fingerprint indexing scheme using minutia neighborhood structure and low-order Delaunay triangles’, IEEE Trans. Inf. Forensics Sec., 2007, 2, (4), pp. 721733.
    31. 31)
      • 31. Liu, E., Liang, J., Pang, L., et al: ‘Minutiae and modified biocode fusion for a fingerprint-based key generation’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 221235.
    32. 32)
      • 32. Mansukhani, P., Tulyakov, S., Govindaraju, V.: ‘A framework for efficient fingerprint identification using a minutiae tree’, IEEE Syst. J., 2010, 4, (2), pp. 126137.
    33. 33)
      • 33. Muñoz-Briseño, A., Gago-Alonso, A., Hernández-Palancar, J.: ‘Fingerprint indexing with bad quality areas’, Expert Syst. Appl., 2013, 40, (5), pp. 18391846.
    34. 34)
      • 34. Muñoz-Briseño, A., Gago-Alonso, A., Hernandez-Palancar, J.: ‘Using reference point as a feature for fingerprint indexing’. Iberoamerican Congress on Pattern Recognition, Puerto Vallarta, Mexico, 2014, pp. 367374.
    35. 35)
      • 35. Muñoz-Briseño, A., Gago-Alonso, A., Hernandez-Palancar, J.: ‘Fingerprint matching using a geometric subgraph mining approach’. Iberoamerican Congress on Pattern Recognition, Montevideo, Uruguay, 2015, pp. 160167.
    36. 36)
      • 36. Nagati, K.A.: ‘A non-linear model for fingerprints matching based on minutiae core pairs interaction’. 2012 22nd Int. Conf. Computer Theory and Applications (ICCTA), Alexandria, Egypt, 2012, pp. 174180.
    37. 37)
      • 37. Reddy, A., Jayaraman, U., Kaushik, V.D., et al: ‘An efficient fingerprint indexing scheme’. Proc. Second Int. Conf. Soft Computing for Problem Solving (SocProS 2012), Jaipur, India, 28–30 December, 2012, 2014, pp. 723728.
    38. 38)
      • 38. Ross, A., Mukherjee, R.: ‘Augmenting ridge curves with minutiae triplets for fingerprint indexing’. Proc. SPIE Conf. Biometric Technology for Human Identification IV, Orlando, USA, 2007, vol. 6539, p. 65390C.
    39. 39)
      • 39. Vandana, D.K., Singh, D., Raj, P., et al: ‘Kd-tree based fingerprint identification system’. Second Int. Conf. Anti-counterfeiting, Security and Identification 2008 ASID 2008, Guiyang, China, 2008, pp. 510.
    40. 40)
      • 40. Vij, A., Namboodiri, A.: ‘Fingerprint indexing based on local arrangements of minutiae neighbourhoods’. 2012 IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, USA, 2012, pp. 7176.
    41. 41)
      • 41. Wang, Y., Yuen, P.C., Cheung, Y.-M.: ‘Hashing fingerprints for identity de-duplication’. 2013 IEEE Int. Workshop Information Forensics and Security (WIFS), Guangzhou, China, 2013, pp. 4954.
    42. 42)
      • 42. Wang, Y., Wang, L., Cheung, Y.-M., et al: ‘Learning compact binary codes for hash-based fingerprint indexing’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (8), pp. 16031616.
    43. 43)
      • 43. Xu, H., Veldhuis, R.N.: ‘Binary spectral minutiae representation with multisample fusion for fingerprint recognition’. Proc. 12th ACM Workshop on Multimedia and Security, Rome, Italy, 2010, pp. 7380.
    44. 44)
      • 44. Yang, B., Chen, Z., Busch, C.: ‘Raster image representation of fingerprint minutiae’. Proc. 2011 ACM Symp. Applied Computing, Taichung, Taiwan, 2011, pp. 812.
    45. 45)
      • 45. Zhou, W., Hu, J., Wang, S., et al: ‘Fingerprint indexing based on combination of novel minutiae triplet features’. Int. Conf. Network and System Security, Xi'an, China, 2014, pp. 377388.
    46. 46)
      • 46. Zhou, W., Hu, J., Wang, S.: ‘Enhanced locality-sensitive hashing for fingerprint forensics over large multi-sensor databases’, IEEE Trans. Big Data, 2017.
    47. 47)
      • 47. Dorizzi, B., Cappelli, R., Ferrara, M., et al: ‘Fingerprint and on-line signature verification competitions at ICB 2009’. Int. Conf. Biometrics, 2009, pp. 725732.
    48. 48)
      • 48. Lowe, D.G.: ‘Object recognition from local scale-invariant features’. Proc. Seventh IEEE Int. Conf. Computer Vision 1999, 1999, vol. 2, pp. 11501157.
    49. 49)
      • 49. Shuai, X., Zhang, C., Hao, P.: ‘Fingerprint indexing based on composite set of reduced SIFT features’. 19th Int. Conf. Pattern Recognition 2008 ICPR 2008, 2008, pp. 14.
    50. 50)
      • 50. Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded-up robust features (SURF)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346359.
    51. 51)
      • 51. Tola, E., Lepetit, V., Fua, P.: ‘Daisy: an efficient dense descriptor applied to wide-baseline stereo’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (5), pp. 815830.
    52. 52)
      • 52. He, S., Zhang, C., Hao, P.: ‘Clustering-based descriptors for fingerprint indexing and fast retrieval’. Asian Conf. Computer Vision, 2009, pp. 354363.
    53. 53)
      • 53. Zheng, R., Zhang, C., He, S., et al: ‘A novel composite framework for large scale fingerprint database indexing and fast retrieval’. 2011 Int. Conf. Hand-based Biometrics (ICHB), Hong Kong, China, 2011, pp. 16.
    54. 54)
      • 54. Nanni, L., Lumini, A.: ‘Descriptors for image-based fingerprint matchers’, Expert Syst. Appl., 2009, 36, (10), pp. 1241412422.
    55. 55)
      • 55. Liu, T., Zhu, G., Zhang, C., et al: ‘Fingerprint indexing based on singular point correlation’. IEEE Int. Conf. Image Processing 2005 ICIP 2005, 2005, vol. 3, pp. II293.
    56. 56)
      • 56. Zegarra, J.A.M., Leite, N.J., da Silva Torres, R.: ‘Wavelet-based fingerprint image retrieval’, J. Comput. Appl. Math., 2009, 227, (2), pp. 294307.
    57. 57)
      • 57. Komal, K., Albrecht, D., Bhattacharjee, N., et al: ‘A region-based alignment-free partial fingerprint matching’. Proc. 14th Int. Conf. Advances in Mobile Computing and Multi Media, Singapore, 2016, pp. 6370.
    58. 58)
      • 58. Yang, J.C., Park, D.S.: ‘A fingerprint verification algorithm using tessellated invariant moment features’, Neurocomputing, 2008, 71, (10), pp. 19391946.
    59. 59)
      • 59. Feng, J., Cai, A.: ‘Fingerprint indexing using ridge invariants’. 18th Int. Conf. Pattern Recognition 2006 ICPR 2006, Hong Kong, China, 2006, vol. 4, pp. 433436.
    60. 60)
      • 60. Jakubowski, M.H., Venkatesan, R.: ‘Randomized radon transforms for biometric authentication via fingerprint hashing’. Proc. 2007 ACM Workshop on Digital Rights Management, Alexandria, USA, 2007, pp. 9094.
    61. 61)
      • 61. Jazzar, M., Muhammad, G.: ‘Feature selection based verification/identification system using fingerprints and palm print’, in (Eds.): ‘Arabian journal for science & engineering’, vol. 38, (Springer Science & Business Media BV, 2013), (4).
    62. 62)
      • 62. Gyaourova, A., Ross, A.: ‘A novel coding scheme for indexing fingerprint patterns’, Struct. Syntactic Stat. Pattern Recognit., 2008, pp. 755764.
    63. 63)
      • 63. Gyaourova, A., Ross, A.: ‘A coding scheme for indexing multimodal biometric databases’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops 2009 CVPR Workshops 2009, Miami, USA, 2009, pp. 9398.
    64. 64)
      • 64. Gyaourova, A., Ross, A.: ‘Index codes for multibiometric pattern retrieval’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 518529.
    65. 65)
      • 65. Doddington, G., Liggett, W., Martin, A., et al: ‘Sheep, goats, lambs and wolves: a statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation’, Technical Report National Institute of Standards and Technology, Gaithersburg MD, 1998.
    66. 66)
      • 66. Cappelli, R., Ferrara, M., Maio, D.: ‘Candidate list reduction based on the analysis of fingerprint indexing scores’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (3), pp. 11601164.
    67. 67)
      • 67. Murakami, T., Takahashi, K.: ‘Fast and accurate biometric identification using score level indexing and fusion’. 2011 Int. Joint Conf. Biometrics (IJCB), Arlington, USA, 2011, pp. 18.
    68. 68)
      • 68. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer, London, 2009).
    69. 69)
      • 69. Galar, M., Derrac, J., Peralta, D., et al: ‘A survey of fingerprint classification part i: taxonomies on feature extraction methods and learning models’, Knowl.-Based Syst., 2015, 81, pp. 7697.
    70. 70)
      • 70. Jain, A.K., Prabhakar, S., Hong, L., et al: ‘Filter bank-based fingerprint matching’, IEEE Trans. Image Process., 2000, 9, (5), pp. 846859.
    71. 71)
      • 71. Kavati, I., Prasad, M.V., Bhagvati, C.: ‘A new indexing method for biometric databases using match scores and decision level fusion’, in Kumar Kundu, Malay, Mohapatra, Durga Prasad, Konar, Amit, et al (Eds.): ‘Advanced computing, networking and informatics’, vol. 1, (Springer, 2014), pp. 493500.
    72. 72)
      • 72. Leung, K., Leung, C.H.: ‘Improvement of fingerprint retrieval by a statistical classifier’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (1), pp. 5969.
    73. 73)
      • 73. Li, J., Yau, W.-Y., Wang, H.: ‘Fingerprint indexing based on symmetrical measurement’. 18th Int. Conf. Pattern Recognition 2006 ICPR 2006, Hong Kong, China, 2006, vol. 1, pp. 10381041.
    74. 74)
      • 74. Liu, T., Zhang, C., Hao, P.: ‘Fingerprint indexing based on LAS registration’. 2006 IEEE Int. Conf. Image Processing, 2006, pp. 301304.
    75. 75)
      • 75. Liu, M., Jiang, X., Kot, A.C.: ‘Fingerprint retrieval by complex filter responses’. 18th Int. Conf. Pattern Recognition 2006 ICPR 2006, 2006, vol. 1, pp. 10421042.
    76. 76)
      • 76. Lumini, A., Maio, D., Maltoni, D.: ‘Continuous versus exclusive classification for fingerprint retrieval’, Pattern Recognit. Lett., 1997, 18, (10), pp. 10271034.
    77. 77)
      • 77. Maio, D., Nanni, L.: ‘An efficient fingerprint verification system using integrated Gabor filters and Parzen window classifier’, Neurocomputing, 2005, 68, pp. 208216.
    78. 78)
      • 78. Ross, A., Jain, A., Reisman, J.: ‘A hybrid fingerprint matcher’, Pattern Recognit., 2003, 36, (7), pp. 16611673.
    79. 79)
      • 79. Turky, A.M., Ahmad, M.S.: ‘The use of SOM for fingerprint classification’. Int. Conf. Information Retrieval & Knowledge Management (CAMP) 2010, Toronto, Canada, 2010, pp. 287290.
    80. 80)
      • 80. Xu, J., Hu, J.: ‘Multi-constrained orientation field modeling and its application for fingerprint indexing’. Int. Conf. Network and System Security, New York, USA, 2015, pp. 176187.
    81. 81)
      • 81. Yang, J., Shin, J., Min, B., et al: ‘Fingerprint matching using invariant moment FingerCode and learning vector quantization neural network’. 2006 Int. Conf. Computational Intelligence and Security, Guangzhou, China, 2006, vol. 1, pp. 735738.
    82. 82)
      • 82. Lee, S.-O., Kim, Y.-G., Park, G.-T.: ‘A feature map consisting of orientation and inter-ridge spacing for fingerprint retrieval’. Int. Conf. Audio- and Video-based Biometric Person Authentication, Hilton Rye Town, USA, 2005, pp. 184190.
    83. 83)
      • 83. Jiang, X., Liu, M., Kot, A.C.: ‘Fingerprint retrieval for identification’, IEEE Trans. Inf. Forensics Sec., 2006, 1, (4), pp. 532542.
    84. 84)
      • 84. Liu, M., Jiang, X., Kot, A.C.: ‘Efficient fingerprint search based on database clustering’, Pattern Recognit., 2007, 40, (6), pp. 17931803.
    85. 85)
      • 85. Cappelli, R.: ‘Fast and accurate fingerprint indexing based on ridge orientation and frequency’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2011, 41, (6), pp. 15111521.
    86. 86)
      • 86. Cappelli, R., Ferrara, M.: ‘A fingerprint retrieval system based on level-1 and level-2 features’, Expert Syst. Appl., 2012, 39, (12), pp. 1046510478.
    87. 87)
      • 87. Paulino, A.A., Liu, E., Cao, K., et al: ‘Latent fingerprint indexing: fusion of level 1 and level 2 features’. 2013 IEEE Sixth Int. Conf. Biometrics: Theory, Applications and Systems (BTAS), Arlington, USA, 2013, pp. 18.
    88. 88)
      • 88. Bazen, A., Veldhuis, R.N., Gerez, S.H., et al: ‘Hybrid fingerprint matching using minutiae and shape’, in Sarfraz, Muhammad (Ed.): ‘Computer aided intelligent recognition techniques and applications’ (2005), pp. 119129.
    89. 89)
      • 89. de Boer, J., Bazen, A.M., Gerez, S.H.: ‘Indexing fingerprint databases based on multiple features’. 14th Workshop on Circuits, Systems and Signal Processing, Technology Foundation (STW), Veldhoven, The Netherlands, 2001.
    90. 90)
      • 90. Pandey, N., Singh, S.: ‘Adaptive latent fingerprint indexing’. 2014 Fifth Int. Conf. Confluence the Next Generation Information Technology Summit (Confluence), Noida, India, 2014, pp. 509514.
    91. 91)
      • 91. Han, F., Hu, J., Yu, X.: ‘A biometric encryption approach incorporating fingerprint indexing in key generation’, Lect. Notes Comput. Sci., 2006, 4115, p. 342.
    92. 92)
      • 92. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2000: fingerprint verification competition’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (3), pp. 402412.
    93. 93)
      • 93. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2002: second fingerprint verification competition’.  Proc. 16th Int. Conf. Pattern Recognition 2002, Quebec, Canada, 2002, vol. 3, pp. 811814.
    94. 94)
      • 94. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2004: third fingerprint verification competition’. Biometric Authentication, Hong Kong, China, 2004, pp. 17.
    95. 95)
      • 95. Cappelli, R., Ferrara, M., Franco, A., et al: ‘Fingerprint verification competition 2006’, Biometric Technol. Today, 2007, 15, (7), pp. 79.
    96. 96)
      • 96. Watson, C.I., Wilson, C.: ‘NIST special database 4’, Fingerprint Database, Natl. Inst. Stand. Technol., 1992, 17, p. 77.
    97. 97)
      • 97. Watson, C.I.: ‘NIST special database 14: mated fingerprint cards pairs 2 version 2,’Technical Report, Citeseer, 2001.
    98. 98)
      • 98. Crihalmeanu, S., Ross, A., Schuckers, S., et al: ‘A protocol for multibiometric data acquisition, storage and dissemination’, Technical Report, WVU, Lane Department of Computer Science and Electrical Engineering, 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0279
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address