Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free RANSAC lens boundary feature based kernel SVM for transparent contact lens detection

Transparent contact lens spoofing has been demonstrated to hamper the overall performance of an iris recognition system. Achieving high detection accuracy with transparent lens is quite challenging using iris texture analysis based techniques. In this regard, the authors propose a supervised learning based transparent lens detection method by designing a novel set of features to describe the faint lens boundary. The input image is first segmented for extracting salient edge points in the sclera region of interest. RANSAC algorithm then performs circle fitting to generate the set of R-points for feature computation. The novel features such as concentricity parameter, R-point count, R-point intensity, R-circle radius, R-cluster count and circle genuineness are associated with distinctive range of values for each class. Experimental results obtained using the kernel-support vector machine (SVM) classifier show that the proposed method can achieve higher average detection accuracy as compared to state-of-the-art techniques: 90.63% (NotreDame I), 84.5% (NotreDame II), 83% (IIIT-D Cogent) and 86.27% (IIIT-D Vista).

References

    1. 1)
      • 7. Doyle, J., Bowyer, K., Flynn, P.: ‘Automated classification of contact lens type in iris images’. Proc. IAPR, 2013, pp. 16.
    2. 2)
      • 25. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8, (6), pp. 679698.
    3. 3)
      • 20. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘Using iris and sclera for detection and classification of contact lenses’, Pattern Recognit. Lett., 2015, 82, pp. 252257.
    4. 4)
      • 14. Hughes, K., Bowyer, K.W.: ‘Detection of contact-lens-based iris biometric spoofs using stereo imaging’. Proc. Hawaii Int. Conf. on System Sciences, 2013.
    5. 5)
      • 31. Theodoridis, S., Koutroumbas, K.: ‘Pattern recognition’ (Academic Press, 2009, 4th edn.).
    6. 6)
      • 36. Manjani, I., Tariyal, S., Vatsa, M., et al: ‘Detecting silicone mask based presentation attack via deep dictionary learning’, IEEE Trans. Inf. Forensics Sec., 2017, 12.7, pp. 17131723.
    7. 7)
      • 37. Kohli, N., Yadav, D., Vatsa, M., et al: ‘Synthetic iris presentation attack using iDCGAN’. arXiv preprint arXiv:1710.10565, 2017.
    8. 8)
      • 11. Puhan, N.B., Sudha, N., Hegde, A.S.: ‘Iris liveness detection for semi-transparent contact lens spoofing’. in Nagamalai, D., Renault, E., Dhanushkodi, M. (Eds.): ‘Advances in digital image processing and information technology’ (Springer, Berlin Heidelberg, 2011), pp. 249256.
    9. 9)
      • 19. Raghavendra, R., Raja, K.B., Busch, C.: ‘Ensemble of statistically independent filters for robust contact lens detection in iris images’. Proc. of ICVGIP, 2014.
    10. 10)
      • 1. Daugman, J.: ‘How iris recognition works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    11. 11)
      • 17. Doyle, J.S., Bowyer, K.W.: ‘Robust detection of textured contact lenses in iris recognition using BSIF’, IEEE Access, 2015, 3, pp. 16721683.
    12. 12)
      • 12. Czajka, A.: ‘Pupil dynamics for iris liveness detection’, IEEE Trans. on Inf. Forensics Sec., 2015, 10, (4), pp. 726735.
    13. 13)
      • 35. Singh, A., Mistry, V., Yadav, D., et al: ‘GHCLNet: A generalized hierarchically tuned contact lens detection network’. arXiv preprint arXiv:1710.05152, 2017.
    14. 14)
      • 13. Connell, J., Ratha, N., Gentile, J., et al: ‘Fake iris detection using structured light’. Proc. IEEE ICASSP, 2013.
    15. 15)
      • 29. Scholkopf, B., Smola, A.J.: ‘Learning with kernels: support vector machines, regularization, optimization, and beyond’ (MIT press, 2002).
    16. 16)
      • 16. Zhang, H., Sun, Z., Tan, T.: ‘Contact lens detection based on weighted LBP’. Proc. Int. Conf. on Pattern Recognition, 2010, pp. 42794282.
    17. 17)
      • 15. Wei, Z., Qiu, X., Tan, T.: ‘Counterfeit iris detection based on texture analysis’. Proc. Int. Conf. on Pattern Recognition, 2008.
    18. 18)
      • 21. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘Contact lens detection and classification in iris images through scale invariant descriptor’. Proc. Int. Conf. on Signal-Image Technology and Internet-Based Systems, 2014, pp. 560565.
    19. 19)
      • 18. Yadav, D., Kohli, N., Doyle, J.S., et al: ‘Unraveling the effect of textured contact lenses on iris recognition’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (5), pp. 851862.
    20. 20)
      • 26. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: ‘Digital image processing using MATLAB’ (Gatesmark Publishing, 2009, 2nd edn.).
    21. 21)
      • 40. He, L., Li, H., Liu, F., et al: ‘Multi-patch convolution neural network for iris liveness detection’. IEEE 8th Int. Conf. on Biometrics Theory, Applications and Systems (BTAS), 2016, pp. 17.
    22. 22)
      • 23. Silva, P., Luz, E., Baeta, R., et al: ‘An approach to iris contact lens detection based on deep image representations’. Proc. IEEE Conf. on Graphics, Patterns and Images (SIBGRAPI), 2015.
    23. 23)
      • 38. Ahmad, M.Z., Arshad, I., Raja, G., et al: ‘Textured cosmetic contact lens detection using statistical features and SVM classifier’, Bahria Univ. J. Inf. Commun. Technol., 2016, (1), p. 23.
    24. 24)
      • 10. Puhan, N.B., Sudha, N., Hegde, A.S.: ‘A new iris liveness detection method against contact lens spoofing’. Proc. IEEE Intl. Symposium on Consumer Electronics, 9.1, 2011, pp. 7174.
    25. 25)
      • 28. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, 2003).
    26. 26)
      • 22. Kumar, M., Puhan, N.B.: ‘Iris liveness detection using texture segmentation’. IEEE National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), December 2015.
    27. 27)
      • 24. Erdogan, G., Ross, A.: ‘Automatic detection of non-cosmetic soft contact lenses in ocular images’, SPIE Defense, Sec., Sens., 2013, 8712.
    28. 28)
      • 33. Jalilian, E., Uhl, A.: ‘Iris segmentation using fully convolutional encoder–decoder networks’, In Bhanu, B., Kumar, A. (Eds): ‘Deep learning for biometrics, advances in computer vision and pattern recognition’ (Springer, Cham, 2017), pp. 133155).
    29. 29)
      • 4. Ma, L., Tan, T., Wang, Y., et al: ‘Personal identification based on iris texture analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (12), pp. 15191533.
    30. 30)
      • 9. Park, K.R.: ‘Robust fake iris detection’, Lect. Notes Comput. Sci., 2006, 4069, pp. 1018.
    31. 31)
      • 39. Thavalengal, S., Nedelcu, T., Bigioi, P., et al: ‘Iris liveness detection for next generation smartphones’, IEEE Trans. Consum. Electron., 2016, 62, (2), pp. 95102.
    32. 32)
      • 6. Ma, L., Tan, T., Zhang, D., et al: ‘Local intensity variation analysis for iris recognition’, Pattern Recognit., 2004, 37, (6), pp. 12871298.
    33. 33)
      • 32. Radman, A., Zainal, N., Suandi, S. A.: ‘Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut’, Digit. Signal Process., 2017, 64, pp. 6070.
    34. 34)
      • 27. Fischler, A.M., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Commun. ACM, 1981, 24, (6), pp. 381395.
    35. 35)
      • 2. Daugman, J.: ‘High confidence visual recognition of persons by a test of statistical independence’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (11), pp. 11481161.
    36. 36)
      • 30. Kavzoglu, T., Colkesen, I.: ‘A kernel functions analysis for support vector machines for land cover classification’, Int. J. Appl. Earth Obs. Geoinformation, 2009, 11, (5), pp. 352359.
    37. 37)
      • 3. Wildes, R.: ‘Iris recognition: an emerging biometric technology’, Proc. IEEE, 1997, 85, pp. 13481363.
    38. 38)
      • 8. Baker, S.E., Hentz, A., Bowyer, K.W., et al: ‘Degradation of iris recognition performance due to non-cosmetic prescription contact lenses’, Comput. Vis. Image Underst., 2010, 114, (9), pp. 10301044.
    39. 39)
      • 5. Masek, L.: ‘Recognition of human iris patterns for biometric identification’, The University of Western Australia, 2003.
    40. 40)
      • 34. Raghavendra, R., Raja, K.B., Busch, C.: ‘Contlensnet: robust iris contact lens detection using deep convolutional neural networks’. IEEE Winter Conf. on Applications of Computer Vision (WACV), 2017, pp. 11601167.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0161
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0161
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address