Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Grey Wolf optimisation-based feature selection and classification for facial emotion recognition

Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/7/5/IET-BMT.2017.0160.html;jsessionid=1u7ghqndzzjl2.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2017.0160&mimeType=html&fmt=ahah

References

    1. 1)
      • 22. Hargreaves, A., Mothersill, O., Anderson, M., et al: ‘Detecting facial emotion recognition deficits in schizophrenia using dynamic stimuli of varying intensities’, Neurosci. Lett., 2016, 633, pp. 4754.
    2. 2)
      • 26. Pu, X., Fan, K., Chen, X., et al: ‘Facial expression recognition from image sequences using twofold random forest classifier’, Neurocomputing, 2015, 168, pp. 11731180.
    3. 3)
      • 31. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey Wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    4. 4)
      • 12. Moeini, A., Faez, K., Sadeghi, H., et al: ‘2D facial expression recognition via 3D reconstruction and feature fusion’, J. Vis. Commun. Image Represent., 2016, 35, pp. 114.
    5. 5)
      • 16. Zhou, Q., Shafiq, R., Zhou, Y., et al: ‘Face recognition using dense SIFT feature alignment’, Chin. J. Electron., 2016, 25, (6), pp. 10341039.
    6. 6)
      • 27. Azeem, A., Sharif, M., Shah, J.H., et al: ‘Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction’, J. Appl. Res. Technol., 2015, 13, (3), pp. 402408.
    7. 7)
      • 37. Sánchez, D., Melin, P., Castillo, O.: ‘Optimization of modular granular neural networks using a firefly algorithm for human recognition’, Eng. Appl. Artif. Intell., 2017, 64, pp. 172186.
    8. 8)
      • 10. Neoh, S.C., Zhang, L., Mistry, K., et al: ‘Intelligent facial emotion recognition using a layered encoding cascade optimization model’, Appl. Soft Comput., 2015, 34, pp. 7293.
    9. 9)
      • 24. Lopes, A.T., Aguiar, E., Souza, A.F.D., et al: ‘Facial expression recognition with convolutional neural networks: coping with few data and the training sample order’, Pattern Recognit., 2017, 61, pp. 610628.
    10. 10)
      • 21. Zhang, L., Mistry, K., Neoh, S.C., et al: ‘Intelligent facial emotion recognition using moth-firefly optimization’, Knowl. Based Syst., 2016, 111, pp. 248267.
    11. 11)
      • 17. Gola, K.A., Shany-Ur, T., Pressman, P., et al: ‘A neural network underlying intentional emotional facial expression in neurodegenerative disease’, NeuroImage: Clin., 2017, 14, pp. 672678.
    12. 12)
      • 5. Brak, L.B., Abby, L., Richman, D.M., et al: ‘Facial emotion recognition among typically developing young children: a psychometric validation of a subset of NimStim stimuli’, Psychiatry Res., 2017, 249, pp. 109114.
    13. 13)
      • 33. Celika, O., Tekeb, A., Yildirima, H.B.: ‘The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean region of Turkey’, J. Clean Prod., 2016, 116, pp. 112.
    14. 14)
      • 45. Wang, S., Liu, Z., Wang, J., et al: ‘Exploiting multi-expression dependences for implicit multi-emotion video tagging’, Image Vis. Comput., 2014, 32, (10), pp. 682691.
    15. 15)
      • 15. Fan, X., Tjahjadi, T.: ‘A dynamic framework based on local zernike moment and motion history image for facial expression recognition’, Pattern Recognit., 2017, 64, pp. 399406.
    16. 16)
      • 29. Mirjalili, S., Saremi, S., Mirjalili, S.M., et al: ‘Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization’, Expert Syst. Appl., 2016, 47, pp. 106119.
    17. 17)
      • 8. Balas, B., Huynh, C., Saville, A., et al: ‘Orientation biases for facial emotion recognition during childhood and adulthood’, J. Exper. Child Psychol., 2015, 140, pp. 171183.
    18. 18)
      • 13. Meng, H., Berthouze, N.B., Deng, Y., et al: ‘Time-delay neural network for continuous emotional dimension prediction from facial expression sequences’, IEEE Trans. Cybern., 2016, 46, (4), pp. 916929.
    19. 19)
      • 32. Komaki, G.M., Kayvanfar, V.: ‘Grey Wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time’, J. Comput. Sci., 2015, 8, pp. 109120.
    20. 20)
      • 34. Yang, M., Liu, Y., You, Z.: ‘The Euclidean embedding learning based on convolutional neural network for stereo matching’, Neurocomputing, 2017, 267, pp. 195200.
    21. 21)
      • 20. Tang, X.W., Yu, M., Duan, W.W., et al: ‘Facial emotion recognition and alexithymia in Chinese male patients with deficit schizophrenia’, Psychiatry Res., 2016, 246, pp. 353359.
    22. 22)
      • 43. Ahmed, F.: ‘Gradient directional pattern: a robust feature descriptor for facial expression recognition’, Electron. Lett., 2012, 48, (19), pp. 12031204.
    23. 23)
      • 38. Lin, C.H.: ‘Novel application of continuously variable transmission system using composite recurrent Laguerre orthogonal polynomials modified PSO NN control system’, ISA Trans., 2016, 64, pp. 405417.
    24. 24)
      • 40. Sun, Y., Akansu, A.N.: ‘Facial expression recognition with regional hidden Markov models’, Electron. Lett., 2014, 50, (9), pp. 671673.
    25. 25)
      • 44. Moeini, A., Faez, K., Moeini, H., et al: ‘Facial expression recognition using dual dictionary learning’, J. Vis. Commun. Image Represent., 2017, 45, pp. 2033.
    26. 26)
      • 2. Lenc, L., Kral, P.: ‘Automatic face recognition system based on the SIFT features’, Comput. Electr. Eng., 2015, 46, pp. 256272.
    27. 27)
      • 9. Lee, S.Y., Bang, M., Kim, K.R., et al: ‘Impaired facial emotion recognition in individuals at ultra-high risk for psychosis and with first-episode schizophrenia, and their associations with neurocognitive deficits and self-reported schizotypy’, Schizophrenia Res., 2015, 165, (1), pp. 6065.
    28. 28)
      • 47. Gaidhane, V.H., Singh, Y.V.H.V.: ‘Emotion recognition using eigenvalues and Levenberg–Marquardt algorithm-based classifier’, Sadhana, 2016, 41, (4), pp. 415423.
    29. 29)
      • 1. Zwick, J.C., Wolkenstein, L.: ‘Facial emotion recognition, theory of mind and the role of facial mimicry in depression’, J. Affective Disorders, 2017, 210, pp. 9099.
    30. 30)
      • 30. Song, X., Tang, L., Zhao, S., et al: ‘Grey Wolf optimizer for parameter estimation in surface waves’, Soil Dyn. Earthq. Eng., 2015, 75, pp. 147157.
    31. 31)
      • 25. Vinay, A., Kathiresan, G., Mundroy, D.A., et al: ‘Face recognition using filtered EOH-sift’, Procedia Comput. Sci., 2016, 79, pp. 543552.
    32. 32)
      • 18. Alqahtani, M.M.J.: ‘An investigation of emotional deficit and facial emotion recognition in traumatic brain injury: a neuropsychological study’, Postępy Psychiatrii I Neurologii, 2015, 24, (4), pp. 217224.
    33. 33)
      • 14. Russo, M., Mahon, K., Shanahan, M., et al: ‘The association between childhood trauma and facial emotion recognition in adults with bipolar disorder’, Psychiatry Res., 2015, 229, (3), pp. 771776.
    34. 34)
      • 3. Fasel, B.: ‘Robust face analysis using convolutional neural networks’. Object Recognition Supported by User Interaction for Service Robots, Switzerland, 2002, vol. 2, pp. 4043.
    35. 35)
      • 28. Boutorh, A., Guessoum, A.: ‘Complex diseases SNP selection and classification by hybrid association rule mining and artificial neural network – based evolutionary algorithms’, Eng. Appl. Artif. Intell., 2016, 51, pp. 5870.
    36. 36)
      • 36. Kobayashi, M.: ‘Gradient descent learning for quaternionic Hopfield neural networks’, Neurocomputing, 2017, 260, pp. 174179.
    37. 37)
      • 4. Theurel, A., Witt, A., Malsert, J., et al: ‘The integration of visual context information in facial emotion recognition in 5- to 15-year-olds’, J. Exper. Child Psychol., 2016, 150, pp. 252271.
    38. 38)
      • 11. Prado, C.E., Treeby, M.S., Crowe, S.F.: ‘Examining relationships between facial emotion recognition, self-control, and psychopathic traits in a non-clinical sample’, Personality Individual Differ., 2015, 80, pp. 2227.
    39. 39)
      • 39. Ozturk, S., Akdemir, B.: ‘Automatic leaf segmentation using grey wolf optimizer based neural network’. Electronics, Palanga, 2017, pp. 16.
    40. 40)
      • 7. Matamoros, A.H., Bonarini, A., Hernandez, E.E., et al: ‘Facial expression recognition with automatic segmentation of face regions using a fuzzy based classification approach’, Knowl.-Based Syst., 2016, 110, pp. 114.
    41. 41)
      • 42. Sonmez, E.B., Albayrak, S.: ‘Critical parameters of the sparse representation-based classifier’, IET Comput. Vis., 2013, 7, (6), pp. 500507.
    42. 42)
      • 23. Zhang, T., Zheng, W., Cui, Z., et al: ‘A deep neural network-driven feature learning method for multi-view facial expression recognition’, IEEE Trans. Multimed., 2016, 18, (12), pp. 25282536.
    43. 43)
      • 19. Rigon, A., Voss, M.W., Turkstra, L.S., et al: ‘Relationship between individual differences in functional connectivity and facial-emotion recognition abilities in adults with traumatic brain injury’, NeuroImage: Clin., 2017, 13, pp. 370377.
    44. 44)
      • 35. Jian, J., Jun, L., Hua, Z.X., et al: ‘Inversion of neural network Rayleigh wave dispersion based on LM algorithm’, Procedia Eng., 2011, 15, pp. 51265132.
    45. 45)
      • 6. Cruz, A.C., Bhanu, B., Thakoor, N.S.: ‘Vision and attention theory based sampling for continuous facial emotion recognition’, IEEE Trans. Affective Comput., 2014, 5, (4), pp. 418431.
    46. 46)
      • 41. Yi, J., Mao, X., Chen, L., et al: ‘Facial expression recognition considering individual differences in facial structure and texture’, IET Comput. Vis., 2014, 8, (5), pp. 429440.
    47. 47)
      • 46. Yu, K., Wang, Z., Zhuo, L., et al: ‘Learning realistic facial expressions from web images’, Pattern Recognit., 2013, 46, (8), pp. 21442155.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0160
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address