http://iet.metastore.ingenta.com
1887

Grey Wolf optimisation-based feature selection and classification for facial emotion recognition

Grey Wolf optimisation-based feature selection and classification for facial emotion recognition

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The channels used to convey the human emotions consider actions, behaviours, poses, facial expressions, and speech. An immense research has been carried out to analyse the relationship between the facial emotions and these channels. The goal of this study is to develop a system for Facial Emotion Recognition (FER) that can analyse the elemental facial expressions of human, such as normal, smile, sad, surprise, anger, fear, and disgust. The recognition process of the proposed FER system is categorised into four processes, namely pre-processing, feature extraction, feature selection, and classification. After preprocessing, scale invariant feature transform -based feature extraction method is used to extract the features from the facial point. Further, a meta-heuristic algorithm called Grey Wolf optimisation (GWO) is used to select the optimal features. Subsequently, GWO-based neural network (NN) is used to classify the emotions from the selected features. Moreover, an effective performance analysis of the proposed as well as the conventional methods such as convolutional neural network, NN-Levenberg–Marquardt, NN-Gradient Descent, NN-Evolutionary Algorithm, NN-firefly, and NN-Particle Swarm Optimisation is provided by evaluating few performance measures and thereby, the effectiveness of the proposed strategy over the conventional methods is validated.

References

    1. 1)
      • 1. Zwick, J.C., Wolkenstein, L.: ‘Facial emotion recognition, theory of mind and the role of facial mimicry in depression’, J. Affective Disorders, 2017, 210, pp. 9099.
    2. 2)
      • 2. Lenc, L., Kral, P.: ‘Automatic face recognition system based on the SIFT features’, Comput. Electr. Eng., 2015, 46, pp. 256272.
    3. 3)
      • 3. Fasel, B.: ‘Robust face analysis using convolutional neural networks’. Object Recognition Supported by User Interaction for Service Robots, Switzerland, 2002, vol. 2, pp. 4043.
    4. 4)
      • 4. Theurel, A., Witt, A., Malsert, J., et al: ‘The integration of visual context information in facial emotion recognition in 5- to 15-year-olds’, J. Exper. Child Psychol., 2016, 150, pp. 252271.
    5. 5)
      • 5. Brak, L.B., Abby, L., Richman, D.M., et al: ‘Facial emotion recognition among typically developing young children: a psychometric validation of a subset of NimStim stimuli’, Psychiatry Res., 2017, 249, pp. 109114.
    6. 6)
      • 6. Cruz, A.C., Bhanu, B., Thakoor, N.S.: ‘Vision and attention theory based sampling for continuous facial emotion recognition’, IEEE Trans. Affective Comput., 2014, 5, (4), pp. 418431.
    7. 7)
      • 7. Matamoros, A.H., Bonarini, A., Hernandez, E.E., et al: ‘Facial expression recognition with automatic segmentation of face regions using a fuzzy based classification approach’, Knowl.-Based Syst., 2016, 110, pp. 114.
    8. 8)
      • 8. Balas, B., Huynh, C., Saville, A., et al: ‘Orientation biases for facial emotion recognition during childhood and adulthood’, J. Exper. Child Psychol., 2015, 140, pp. 171183.
    9. 9)
      • 9. Lee, S.Y., Bang, M., Kim, K.R., et al: ‘Impaired facial emotion recognition in individuals at ultra-high risk for psychosis and with first-episode schizophrenia, and their associations with neurocognitive deficits and self-reported schizotypy’, Schizophrenia Res., 2015, 165, (1), pp. 6065.
    10. 10)
      • 10. Neoh, S.C., Zhang, L., Mistry, K., et al: ‘Intelligent facial emotion recognition using a layered encoding cascade optimization model’, Appl. Soft Comput., 2015, 34, pp. 7293.
    11. 11)
      • 11. Prado, C.E., Treeby, M.S., Crowe, S.F.: ‘Examining relationships between facial emotion recognition, self-control, and psychopathic traits in a non-clinical sample’, Personality Individual Differ., 2015, 80, pp. 2227.
    12. 12)
      • 12. Moeini, A., Faez, K., Sadeghi, H., et al: ‘2D facial expression recognition via 3D reconstruction and feature fusion’, J. Vis. Commun. Image Represent., 2016, 35, pp. 114.
    13. 13)
      • 13. Meng, H., Berthouze, N.B., Deng, Y., et al: ‘Time-delay neural network for continuous emotional dimension prediction from facial expression sequences’, IEEE Trans. Cybern., 2016, 46, (4), pp. 916929.
    14. 14)
      • 14. Russo, M., Mahon, K., Shanahan, M., et al: ‘The association between childhood trauma and facial emotion recognition in adults with bipolar disorder’, Psychiatry Res., 2015, 229, (3), pp. 771776.
    15. 15)
      • 15. Fan, X., Tjahjadi, T.: ‘A dynamic framework based on local zernike moment and motion history image for facial expression recognition’, Pattern Recognit., 2017, 64, pp. 399406.
    16. 16)
      • 16. Zhou, Q., Shafiq, R., Zhou, Y., et al: ‘Face recognition using dense SIFT feature alignment’, Chin. J. Electron., 2016, 25, (6), pp. 10341039.
    17. 17)
      • 17. Gola, K.A., Shany-Ur, T., Pressman, P., et al: ‘A neural network underlying intentional emotional facial expression in neurodegenerative disease’, NeuroImage: Clin., 2017, 14, pp. 672678.
    18. 18)
      • 18. Alqahtani, M.M.J.: ‘An investigation of emotional deficit and facial emotion recognition in traumatic brain injury: a neuropsychological study’, Postępy Psychiatrii I Neurologii, 2015, 24, (4), pp. 217224.
    19. 19)
      • 19. Rigon, A., Voss, M.W., Turkstra, L.S., et al: ‘Relationship between individual differences in functional connectivity and facial-emotion recognition abilities in adults with traumatic brain injury’, NeuroImage: Clin., 2017, 13, pp. 370377.
    20. 20)
      • 20. Tang, X.W., Yu, M., Duan, W.W., et al: ‘Facial emotion recognition and alexithymia in Chinese male patients with deficit schizophrenia’, Psychiatry Res., 2016, 246, pp. 353359.
    21. 21)
      • 21. Zhang, L., Mistry, K., Neoh, S.C., et al: ‘Intelligent facial emotion recognition using moth-firefly optimization’, Knowl. Based Syst., 2016, 111, pp. 248267.
    22. 22)
      • 22. Hargreaves, A., Mothersill, O., Anderson, M., et al: ‘Detecting facial emotion recognition deficits in schizophrenia using dynamic stimuli of varying intensities’, Neurosci. Lett., 2016, 633, pp. 4754.
    23. 23)
      • 23. Zhang, T., Zheng, W., Cui, Z., et al: ‘A deep neural network-driven feature learning method for multi-view facial expression recognition’, IEEE Trans. Multimed., 2016, 18, (12), pp. 25282536.
    24. 24)
      • 24. Lopes, A.T., Aguiar, E., Souza, A.F.D., et al: ‘Facial expression recognition with convolutional neural networks: coping with few data and the training sample order’, Pattern Recognit., 2017, 61, pp. 610628.
    25. 25)
      • 25. Vinay, A., Kathiresan, G., Mundroy, D.A., et al: ‘Face recognition using filtered EOH-sift’, Procedia Comput. Sci., 2016, 79, pp. 543552.
    26. 26)
      • 26. Pu, X., Fan, K., Chen, X., et al: ‘Facial expression recognition from image sequences using twofold random forest classifier’, Neurocomputing, 2015, 168, pp. 11731180.
    27. 27)
      • 27. Azeem, A., Sharif, M., Shah, J.H., et al: ‘Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction’, J. Appl. Res. Technol., 2015, 13, (3), pp. 402408.
    28. 28)
      • 28. Boutorh, A., Guessoum, A.: ‘Complex diseases SNP selection and classification by hybrid association rule mining and artificial neural network – based evolutionary algorithms’, Eng. Appl. Artif. Intell., 2016, 51, pp. 5870.
    29. 29)
      • 29. Mirjalili, S., Saremi, S., Mirjalili, S.M., et al: ‘Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization’, Expert Syst. Appl., 2016, 47, pp. 106119.
    30. 30)
      • 30. Song, X., Tang, L., Zhao, S., et al: ‘Grey Wolf optimizer for parameter estimation in surface waves’, Soil Dyn. Earthq. Eng., 2015, 75, pp. 147157.
    31. 31)
      • 31. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey Wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    32. 32)
      • 32. Komaki, G.M., Kayvanfar, V.: ‘Grey Wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time’, J. Comput. Sci., 2015, 8, pp. 109120.
    33. 33)
      • 33. Celika, O., Tekeb, A., Yildirima, H.B.: ‘The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean region of Turkey’, J. Clean Prod., 2016, 116, pp. 112.
    34. 34)
      • 34. Yang, M., Liu, Y., You, Z.: ‘The Euclidean embedding learning based on convolutional neural network for stereo matching’, Neurocomputing, 2017, 267, pp. 195200.
    35. 35)
      • 35. Jian, J., Jun, L., Hua, Z.X., et al: ‘Inversion of neural network Rayleigh wave dispersion based on LM algorithm’, Procedia Eng., 2011, 15, pp. 51265132.
    36. 36)
      • 36. Kobayashi, M.: ‘Gradient descent learning for quaternionic Hopfield neural networks’, Neurocomputing, 2017, 260, pp. 174179.
    37. 37)
      • 37. Sánchez, D., Melin, P., Castillo, O.: ‘Optimization of modular granular neural networks using a firefly algorithm for human recognition’, Eng. Appl. Artif. Intell., 2017, 64, pp. 172186.
    38. 38)
      • 38. Lin, C.H.: ‘Novel application of continuously variable transmission system using composite recurrent Laguerre orthogonal polynomials modified PSO NN control system’, ISA Trans., 2016, 64, pp. 405417.
    39. 39)
      • 39. Ozturk, S., Akdemir, B.: ‘Automatic leaf segmentation using grey wolf optimizer based neural network’. Electronics, Palanga, 2017, pp. 16.
    40. 40)
      • 40. Sun, Y., Akansu, A.N.: ‘Facial expression recognition with regional hidden Markov models’, Electron. Lett., 2014, 50, (9), pp. 671673.
    41. 41)
      • 41. Yi, J., Mao, X., Chen, L., et al: ‘Facial expression recognition considering individual differences in facial structure and texture’, IET Comput. Vis., 2014, 8, (5), pp. 429440.
    42. 42)
      • 42. Sonmez, E.B., Albayrak, S.: ‘Critical parameters of the sparse representation-based classifier’, IET Comput. Vis., 2013, 7, (6), pp. 500507.
    43. 43)
      • 43. Ahmed, F.: ‘Gradient directional pattern: a robust feature descriptor for facial expression recognition’, Electron. Lett., 2012, 48, (19), pp. 12031204.
    44. 44)
      • 44. Moeini, A., Faez, K., Moeini, H., et al: ‘Facial expression recognition using dual dictionary learning’, J. Vis. Commun. Image Represent., 2017, 45, pp. 2033.
    45. 45)
      • 45. Wang, S., Liu, Z., Wang, J., et al: ‘Exploiting multi-expression dependences for implicit multi-emotion video tagging’, Image Vis. Comput., 2014, 32, (10), pp. 682691.
    46. 46)
      • 46. Yu, K., Wang, Z., Zhuo, L., et al: ‘Learning realistic facial expressions from web images’, Pattern Recognit., 2013, 46, (8), pp. 21442155.
    47. 47)
      • 47. Gaidhane, V.H., Singh, Y.V.H.V.: ‘Emotion recognition using eigenvalues and Levenberg–Marquardt algorithm-based classifier’, Sadhana, 2016, 41, (4), pp. 415423.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0160
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address