http://iet.metastore.ingenta.com
1887

access icon openaccess On view-invariant gait recognition: a feature selection solution

  • PDF
    1.4566535949707031MB
  • XML
    247.4228515625Kb
  • HTML
    189.818359375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/7/4/IET-BMT.2017.0151.html;jsessionid=bb8ekn954qo9h.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2017.0151&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Chew-Yean, Y., Nixon, M.: ‘Encyclopedia of Biometrics’, in Li, S.Z., Jain, A. (Eds.): 2009, pp. 633639.
    2. 2)
      • 2. Han, J., Bhanu, B.: ‘Individual recognition using gait energy image’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (2), pp. 316322.
    3. 3)
      • 3. Wang, C., Zhang, J., Wang, L., et al: ‘Human identification using temporal information preserving gait template’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11), pp. 21642176.
    4. 4)
      • 4. Bashir, K., Xiang, T., Gong, S.: ‘Gait recognition using gait entropy image’. In Proc. 3rd Int. Conf. Crime Detection and Prevention (ICDP), December 2009, pp. 41954199.
    5. 5)
      • 5. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.
    6. 6)
      • 6. Makihara, Y., Matovski, D. S., Nixon, M. S., et al: ‘Gait recognition: databases, representations, and applications’, Wiley Encycl. Electr. Electron. Eng., 2015, pp. 115.
    7. 7)
      • 7. Jia, N., Li, C.T., Sanchez, V., et al: ‘Fast and robust framework for view-invariant gait recognition’. 2017 5th Int. Workshop on Biometrics and Forensics (IWBF), April 2017, pp. 16.
    8. 8)
      • 8. Tang, J., Luo, J., Tjahjadi, T., et al: ‘Robust arbitrary-view gait recognition based on 3d partial similarity matching’, IEEE Trans. Image Process., 2017, 26, (1), pp. 722.
    9. 9)
      • 9. Luo, J., Tang, J., Tjahjadi, T., et al: ‘Robust arbitrary view gait recognition based on parametric 3d human body reconstruction and virtual posture synthesis’, Pattern Recognit., 2016, 60, pp. 361377.
    10. 10)
      • 10. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘A new view-invariant feature for cross-view gait recognition’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (10), pp. 16421653.
    11. 11)
      • 11. Goffredo, M., Bouchrika, I., Carter, J., et al: ‘Self-calibrating view-invariant gait biometrics’, IEEE Trans. Syst. Man Cybern. B: Cybern., 2010, 40, (4), pp. 9971008.
    12. 12)
      • 12. Makihara, Y., Sagawa, R., Mukaigawa, Y., et al: ‘Which reference view is effective for gait identification using a view transformation model?’. Proc. Conf. Computer Vision and Pattern Recognition Workshop (CVPRW), June 2006, pp. 4545.
    13. 13)
      • 13. Kusakunniran, W., Wu, Q., Li, H., et al: ‘Multiple views gait recognition using view transformation model based on optimized gait energy image’. 2009 IEEE 12th Int. Conf. Computer Vision Workshops, ICCV Workshops, September 2009, pp. 10581064.
    14. 14)
      • 14. Muramatsu, D., Shiraishi, A., Makihara, Y., et al: ‘Gait-based person recognition using arbitrary view transformation model’, IEEE Trans. Image Process., 2015, 24, (1), pp. 140154.
    15. 15)
      • 15. Portillo-Portillo, J., Leyva, R., Sanchez, V., et al: ‘View-invariant gait recognition using a joint-DLDA framework’ (Springer International Publishing, Cham, 2016), pp. 398408.
    16. 16)
      • 16. Portillo-Portillo, J., Leyva, R., Sanchez, V., et al: ‘Cross view gait recognition using joint-direct linear discriminant analysis’, Sensors, 2017, 17, (1), p. 6.
    17. 17)
      • 17. Portillo-Portillo, J., Leyva, R., Sanchez, V., et al: ‘A view-invariant gait recognition algorithm based on a joint-direct linear discriminant analysis’, Appl. Intell., 2017.
    18. 18)
      • 18. Hu, M., Wang, Y., Zhang, Z., et al: ‘View-invariant discriminative projection for multi-view gait-based human identification’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (12), pp. 20342045.
    19. 19)
      • 19. Zhang, Z., Chen, J., Wu, Q., et al: ‘Gii representation-based cross-view gait recognition by discriminative projection with list-wise constraints’, IEEE Trans. Cybern., 2017, PP, (99), pp. 113.
    20. 20)
      • 20. Alotaibi, M., Mahmood, A.: ‘Improved gait recognition based on specialized deep convolutional neural networks’. Proc. IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2015, pp. 17.
    21. 21)
      • 21. Shiraga, K., Makihara, Y., Muramatsu, D., et al Geinet: ‘View-invariant gait recognition using a convolutional neural network’. Proc. Int. Conf. Biometrics (ICB), June 2016, pp. 18.
    22. 22)
      • 22. Wu, Z., Huang, Y., Wang, L., et al: ‘A comprehensive study on cross-view gait based human identification with deep CNNs’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, PP, (99), pp. 11.
    23. 23)
      • 23. Wang, L., Tan, T., Ning, H., et al: ‘Silhouette analysis-based gait recognition for human identification’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (12), pp. 15051518.
    24. 24)
      • 24. Sarkar, S., Phillips, P.J., Liu, Z., et al: ‘The humanoid gait challenge problem: data sets, performance, and analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (2), pp. 162177.
    25. 25)
      • 25. Shelhamer, E., Long, J., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (4), pp. 640651.
    26. 26)
      • 26. Friedman, J., Hastie, T., Tibshirani, R.: ‘The elements of statistical learning’, in ‘Springer series in statistics’ (Springer, Berlin, 2001), volume 1.
    27. 27)
      • 27. Yang, J., Zhang, D., Frangi, A. F., et al: ‘Two-dimensional PCA: a new approach to appearance-based face representation and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (1), pp. 131137.
    28. 28)
      • 28. Yu, S., Tan, D., Tan, T.: ‘A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition’. Proc. 18th Int. Conf. Pattern Recognition (ICPR), 2006, vol. 4, pp. 441444.
    29. 29)
      • 29. Mansur, A., Makihara, Y., Muramatsu, D., et al: ‘Cross-view gait recognition using view-dependent discriminative analysis’. Proc. IEEE Int. Joint Conf. on Biometrics (IJCB), September 2014, pp. 18.
    30. 30)
      • 30. Muramatsu, D., Makihara, Y., Yagi, Y.: ‘View transformation model incorporating quality measures for cross-view gait recognition’, IEEE Trans. Cybern., 2016, 46, (7), pp. 16021615.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0151
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address