http://iet.metastore.ingenta.com
1887

Robust partitioning and indexing for iris biometric database based on local features

Robust partitioning and indexing for iris biometric database based on local features

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Explosive growth in the volume of stored biometric data has resulted in classification and indexing becoming important operations in image database systems. Consequently, researchers are focused on finding suitable features of images that can be used as indexes. Stored templates have to be classified and indexed based on these extracted features in a manner that enables access to and retrieval of those data by efficient search processes. This paper proposes a method that extracts the most relevant features of iris images to facilitate minimisation of the indexing time and the search area of the biometric database. The proposed method combines three transformation methods DCT, DWT and SVD to analyse iris images and extract their local features. Further, the scalable K-means++ algorithm is used for partitioning and classification processes, and an efficient parallel technique that divides the features groups causing the formation of two b-trees based on index keys is applied for search and retrieval. Moreover, search within a group is achieved using a proposed half search algorithm. Experimental results on three different publicly iris databases indicate that the proposed method results in a significant performance improvement in terms of bin miss rate and penetration rate compared with conventional methods.

References

    1. 1)
      • 1. Radman, A., Jumari, K., Zainal, N.: ‘Fast and reliable iris segmentation algorithm’, IET Image Process., 2013, 7, (1), pp. 4249.
    2. 2)
      • 2. Bhanu, B., Xuejun, T.: ‘Fingerprint indexing based on novel features of minutiae triplets’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 616622.
    3. 3)
      • 3. Parmar, A., Degadwala, D.: ‘Fingerprint indexing approaches for biometric database: a review’, Int. J. Comput. Appl., 2015, 130, (13), pp. 1724.
    4. 4)
      • 4. Jayaraman, U., Prakash, S., Gupta, P.: ‘An efficient color and texture based iris image retrieval technique’, Expert Syst. Appl., 2012, 39, (5), pp. 49154926.
    5. 5)
      • 5. Barbu, T., Luca, M.: ‘Content-based iris indexing and retrieval model using spatial access methods’. 2015 Int. Symp. on Signals, Circuits and Systems (ISSCS), Iasi, 2015, pp. 14.
    6. 6)
      • 6. Dey, S., Samanta, D.: ‘Iris data indexing method using Gabor energy features’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (4), pp. 11921203.
    7. 7)
      • 7. Mehrotra, H.: ‘Iris identification using keypoint descriptors and geometric hashing’. Master's thesis, National Institute of Technology Rourkela, 2010.
    8. 8)
      • 8. Raykov, Y., Boukouvalas, A., Baig, F., et al: ‘What to do when K-means clustering fails: a simple yet principled alternative algorithm’, PLoS ONE, 2015, 11, (9), pp. 128.
    9. 9)
      • 9. Bay, H., Tuytelaars, T., Van Gool, L.: ‘SURF: speeded up robust features’. Proc. 9th European Conf. Computer Vision, Graz, Austria, May 2006, pp. 404417.
    10. 10)
      • 10. Mukherjee, R., Ross, A.: ‘Indexing iris images’. Int. Conf. Pattern Recognition (ICPR 08), Tampa, FL, USA, December 2008, pp. 14.
    11. 11)
      • 11. Mehrotra, H., Majhi, B., Gupta, P.: ‘Robust iris indexing scheme using geometric hashing of SIFT keypoints’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 300313.
    12. 12)
      • 12. Si, Y., Mei, J., Gao, H.: ‘Novel approaches to improve robustness, accuracy and rapidity of iris recognition systems’, IEEE Trans. Ind. Inf., 2012, 8, (1), pp. 110117.
    13. 13)
      • 13. Mehrotra, H., Srinivas, B. G., Majhi, B.: ‘Indexing iris biometric database using energy histogram of DCT subbands’, J. Commun. Comp. Inf. Sci., 2009, 40, pp. 194204.
    14. 14)
      • 14. Wolfson, H., Rigoutsos, I.: ‘Geometric hashing: an overview’, IEEE Comput. Sci. Eng., 4, (4), 1997, pp. 1021.
    15. 15)
      • 15. Jia, Y., Wang, J., Zeng, G., et al: ‘Optimizing kd-trees for scalable visual descriptor indexing’. CVPR, Tampa, FL, USA, 2010, pp. 33923399.
    16. 16)
      • 16. Rathgeb, C., Breitinger, F., Baier, H., et al: ‘Towards bloom filter-based indexing of iris biometric data’. IEEE Int. Conf. Biometrics (ICB'15), Phuket, Thailand, 2015, pp. 422429.
    17. 17)
      • 17. Bowyer, K., Hollingsworth, K., Flynn, P.: ‘Image understanding for iris biometrics: a survey’. Comput. Vis. Image Underst., 2008, 110, (2), pp. 281307.
    18. 18)
      • 18. Kaur, H., Pathania, S.: ‘Image enhancement and iris recognition using SIFT feature extraction’, Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE), 2016, 5, (5), pp. 12541256.
    19. 19)
      • 19. Jiang, X. (Ed.): ‘Fingerprint classification’, in Encyclopedia of biometrics (Springer, Boston, 2009), pp. 439446.
    20. 20)
      • 20. Martíne, P., Ramos, P.: ‘Feature extraction using SIFT with a preprocessing by adding CLAHE algorithm to enhance image histograms’. Electronics and Automotive Engineering (ICMEAE), Mexico, 2014, pp. 2025.
    21. 21)
      • 21. Abyoto, R. W., Wirdjosoedirdjo, S. J., Watanable, R. G.: ‘Unsupervised texture segmentation using multiresolution analysis for feature extraction’, J. Tokyo Univ. Inform. Sci., 1998, 2, (9), pp. 4961.
    22. 22)
      • 22. Cheng, H., Yu, C.: ‘Block based cloud classification with statistical features and distribution of local texture features’, Atmos. Meas. Tech. Discuss., 2014, 7, (11), pp. 1177111798.
    23. 23)
      • 23. Chen, M., Zhang, Y., Lu, C.: ‘Efficient architecture of variable size HEVC 2D-DCT for FPGA platforms’, AEU – Int. J. Electron. Commun., 2017, 73, pp. 18.
    24. 24)
      • 24. Ahmed, N., Natarjan, T., Rao, K. R.: ‘Discrete cosine transform’, IEEE Trans. Comput., 1974, C-23, pp. 9093.
    25. 25)
      • 25. Nair, A. H., Aruna, P.: ‘Comparison of DCT SVD and BFOA based multimodal biometric watermarking systems’, Alexandria Eng. J., 2015, 54, (4), pp. 11611174.
    26. 26)
      • 26. Sadygov, R.: ‘Use of singular value decomposition analysis to differentiate phosphorylated precursors in strong cation exchange fractions’, Electrophoresis, 2014, 35, (24), pp. 34983503.
    27. 27)
      • 27. Gohberg, I., Krein, M.: ‘Introduction to the theory of linear non-selfadjoint operators’ (American Mathematical Society, USA, 1969, 1st edn.).
    28. 28)
      • 28. K-means clustering’. Available at https://en.wikipedia.org/wiki/K-means_clustering, accessed April 2017.
    29. 29)
      • 29. Memon, K. H., Lee, D. H.: ‘Generalised fuzzy c-means clustering algorithm with local information’, IET Image Process., 2017, 11, (1), pp. 112.
    30. 30)
      • 30. Bahmani, B., Moseley, B., Vattani, A., et al: ‘Scalable k-means++’, Proc. VLDB Endow., 2012, 5, (7), pp. 622633.
    31. 31)
      • 31. Center for Biometrics and Security Research. Available at www.cbsr.ia.ac.cn/IrisDatabase.htm, accessed May 2017.
    32. 32)
      • 32. Center for Biometrics and Security Research. Available at http://www.cbsr.ia.ac.cn/china/Iris%20Databases%20CH.asp, accessed May 2017.
    33. 33)
      • 33. BATH iris database’. Available at http://www.smartsensors.co.uk/products/iris-database/, accessed October 2016.
    34. 34)
      • 34. Database of Indian Institute of Technology Kanpur. Available at http://www.cse.iitk.ac.in/users/biometrics, accessed October 2016.
    35. 35)
      • 35. Wayman, J.: ‘Error rate equations for the general biometric system’, IEEE Robot. Autom. Mag., 1999, 6, (1), pp. 3548.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0130
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address