http://iet.metastore.ingenta.com
1887

Label propagation approach for predicting missing biographic labels in face-based biometric records

Label propagation approach for predicting missing biographic labels in face-based biometric records

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A biometric system uses the physical or behavioural attributes of a person, such as face, fingerprint, iris or voice, to recognise an individual. Many operational biometric systems store the biographic information of an individual, viz., name, gender, age and ethnicity, besides the biometric data itself. Thus, the biometric record pertaining to an individual consists of both biometric data and biographic data. We propose the use of a graph structure to model the relationship between the biometric records in a database. We show the benefits of such a graph in deducing biographic labels of incomplete records, i.e. records that may have missing biographic information. In particular, we use a label propagation scheme to deduce missing values for both binary-valued biographic attributes (e.g. gender) as well as multi-valued biographic attributes (e.g. age group). Experimental results using face-based biometric records consisting of name, age, gender and ethnicity convey the pros and cons of the proposed method.

References

    1. 1)
      • 1. Jain, A.K., Ross, A.A., Nandakumar, K.: ‘Introduction to biometrics’ (Springer Science & Business Media, 2011).
    2. 2)
      • 2. Otto, C., Wang, D., Jain, A.: ‘Clustering millions of faces by identity’, IEEE Trans. Pattern Anal. Mach. Intell., 2017.
    3. 3)
      • 3. Ricanek, K., Tesafaye, T.: ‘Morph: a longitudinal image database of normal adult age-progression’. IEEE Conf. on Automatic Face and Gesture Recognition, 2006, pp. 341345.
    4. 4)
      • 4. Swearingen, T., Ross, A.: ‘Predicting missing demographic information in biometric records using label propagation techniques’. Conf. of the Biometrics Special Interest Group (BIOSIG), 2016, pp. 15.
    5. 5)
      • 5. Jain, A.K., Dass, S.C., Nandakumar, K.: ‘Can soft biometric traits assist user recognition?’, in Jain, Anil K., Ratha, Nalini K.Defense and security’, vol. 5404 (International Society for Optics and Photonics, 2004), pp. 561572.
    6. 6)
      • 6. Almudhahka, N., Nixon, M., Hare, J.: ‘Human face identification via comparative soft biometrics’. ISBA 2016 – IEEE Int. Conf. on Identity, Security and Behavior Analysis, 2016, pp. 16.
    7. 7)
      • 7. Almudhahka, N.Y., Nixon, M.S., Hare, J.S.: ‘Unconstrained human identification using comparative facial soft biometrics’. 2016 IEEE 8th Int. Conf. on Biometrics Theory, Applications and Systems (BTAS), 2016, pp. 16.
    8. 8)
      • 8. Martinho-Corbishley, D., Nixon, M.S., Carter, J.N.: ‘Soft biometric retrieval to describe and identify surveillance images’. ISBA 2016 – IEEE Int. Conf. on Identity, Security and Behavior Analysis, 2016, pp. 16.
    9. 9)
      • 9. Chu, W.-T., Chiu, C.-H.: ‘Predicting occupation from single facial images’. IEEE Int. Symp. on Multimedia (ISM), 2014, pp. 912.
    10. 10)
      • 10. Chen, H., Gallagher, A.C., Girod, B.: ‘What's in a name?’. IEEE Conf. on Computer Vision and Pattern Recognition, 2013, vol. 6, pp. 33663373.
    11. 11)
      • 11. Dantcheva, A., Elia, P., Ross, A.: ‘What else does your biometric data reveal? A survey on soft biometrics’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (3), pp. 441467.
    12. 12)
      • 12. Gallagher, A.C., Chen, T.: ‘Estimating age, gender, and identity using first name priors’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 18.
    13. 13)
      • 13. Shan, C.: ‘Learning local binary patterns for gender classification on real-world face images’, Pattern Recognit. Lett., 2012, 33, (4), pp. 431437.
    14. 14)
      • 14. Levi, G., Hassncer, T.: ‘Age and gender classification using convolutional neural networks’. IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015, pp. 3442.
    15. 15)
      • 15. Makinen, E., Raisamo, R.: ‘Evaluation of gender classification methods with automatically detected and aligned faces’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (3), pp. 541547.
    16. 16)
      • 16. Han, H., Otto, C., Liu, X., et al: ‘Demographic estimation from face images: human vs. machine performance’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (6), pp. 11481161.
    17. 17)
      • 17. Chen, J.-C., Kumar, A., Ranjan, R., et al: ‘A cascaded convolutional neural network for age estimation of unconstrained faces’. Conf. on Biometrics Theory, Applications and Systems (BTAS), 2016, pp. 18.
    18. 18)
      • 18. Fu, Y., Guo, G., Huang, T.S.: ‘Age synthesis and estimation via faces: a survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 19551976.
    19. 19)
      • 19. Ding, H., Huang, D., Wang, Y., et al: ‘Facial ethnicity classification based on boosted local texture and shape descriptions’. IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, 2013, pp. 16.
    20. 20)
      • 20. Kumar, N., Berg, A., Belhumeur, P.N., et al: ‘Describable visual attributes for face verification and image search’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (10), pp. 19621977.
    21. 21)
      • 21. Muhammad, G., Hussain, M., Alenezy, F., et al: ‘Race classification from face images using local descriptors’, Int. J. Artif. Intell. Tools, 2012, 21, (05), p. 1250019.
    22. 22)
      • 22. Ambekar, A., Ward, C., Mohammed, J., et al: ‘Name-ethnicity classification from open sources’. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2009, pp. 4958.
    23. 23)
      • 23. Fu, S., He, H., Hou, Z.-G.: ‘Race classification from face: a survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (12), pp. 24832509.
    24. 24)
      • 24. Ross, A.A., Nandakumar, K., Jain, A.A.: ‘Handbook of multibiometrics’, vol. 6 (2006), Springer Science and Business Media.
    25. 25)
      • 25. Klare, B.F., Burge, M.J., Klontz, J.C., et al: ‘Face recognition performance: role of demographic information’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (6), pp. 17891801.
    26. 26)
      • 26. Han, H., Klare, B.F., Bonnen, K., et al: ‘Matching composite sketches to face photos: a component-based approach’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (1), pp. 191204.
    27. 27)
      • 27. Jain, A.K., Nandakumar, K., Lu, X., et al: ‘Integrating faces, fingerprints, and soft biometric traits for user recognition’. Workshop on Biometric Authentication, 2004, pp. 259269.
    28. 28)
      • 28. Tyagi, V., Karanam, H.P.: ‘Fusing biographical and biometric classifiers for improved person identification’. Conf. on Pattern Recognition (ICPR), 2012, pp. 23512354.
    29. 29)
      • 29. Bhatt, H.S., Singh, R., Vatsa, M.: ‘Can combining demographics and biometrics improve de-duplication performance?IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, 2013, pp. 188193.
    30. 30)
      • 30. Sudhish, P.S., Jain, A.K., Cao, K.: ‘Adaptive fusion of biometric and biographic information for identity deduplication’, Pattern Recognit. Lett., 2016, 84, pp. 199207.
    31. 31)
      • 31. Ratha, N.K., Connell, J.H., Pankanti, S.: ‘Big data approach to biometric-based identity analytics’, IBM J. Res. Dev., 2015, 59, (2/3), pp. 4:14:11.
    32. 32)
      • 32. ‘Think BIG Fusion of Biometric and Biographic Data In Large-Scale Identification Projects’. WCC Smart Search & Match, Technical Report.
    33. 33)
      • 33. Liu, W., Ruths, D.: ‘What's in a name? Using first names as features for gender inference in twitter’. Analyzing Microtext: Papers from the 2013 AAAI Spring Symp., 2013, pp. 1016.
    34. 34)
      • 34. Zhou, D., Bousquet, O., Lal, T.N., et alLearning with local and global consistency’. Advances in Neural Information Processing Systems (NIPS), 2003, vol. 16, pp. 321328.
    35. 35)
      • 35. Rubinstein, M., Liu, C., Freeman, W.T.: ‘Annotation propagation in large image databases via dense image correspondence’. European Conf. on Computer Vision, 2012, pp. 8599.
    36. 36)
      • 36. Houle, M.E., Oria, V., Satoh, S., et al: ‘Annotation propagation in image databases using similarity graphs’, ACM Trans. Multimedia Comput. Commun. Appl., 2013, 27, (1), pp. 288311.
    37. 37)
      • 37. Yu, J., Jin, X., Han, J., et al: ‘Collection-based sparse label propagation and its application on social group suggestion from photos’, ACM Trans. Intell. Syst. Technol., 2011, 2, (2), pp. 12:112:21.
    38. 38)
      • 38. Liu, D., Yan, S., Hua, X.S., et al: ‘Image retagging using collaborative tag propagation’, IEEE Trans. Multimedia, 2011, 13, (4), pp. 702712.
    39. 39)
      • 39. Tang, J., Li, M., Li, Z., et al: ‘Tag ranking based on salient region graph propagation’, Multimedia Syst., 2015, 21, (3), pp. 267275.
    40. 40)
      • 40. Mateos, P.: ‘A review of name-based ethnicity classification methods and their potential in population studies’, Popul. Space Place, 2007, 13, (4), pp. 243263.
    41. 41)
      • 41. Skerry, P.: ‘Counting on the census?: Race, group identity, and the evasion of politics’, vol. 56 (Brookings Institution Press, 2000).
    42. 42)
      • 42. Michael, J.: ‘40,000 namen. anredebestimmung anhand des vornamens’. c't, 2007, pp. 182183.
    43. 43)
      • 43. Frequently occuring first names and surnames from the 1990 census’, United States Census Bureau, Technical Report, 1995.
    44. 44)
      • 44. Word, D.L., Coleman, C.D., Nunziata, R., et al: ‘Demographic aspects of surnames from Census 2000’. United States Census Bureau, Technical Report, 2000.
    45. 45)
      • 45. Huang, G.B., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. University of Massachusetts, Amherst, Technical Report 07-49, October 2007.
    46. 46)
      • 46. Wilcoxon, F.: ‘Individual comparisons by ranking methods’, Biometrics Bull., 1945, 1, (6), pp. 8083.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0117
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address