http://iet.metastore.ingenta.com
1887

Face recognition under spoofing attacks: countermeasures and research directions

Face recognition under spoofing attacks: countermeasures and research directions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Among tangible threats facing current biometric systems are spoofing attacks. A spoofing attack occurs when a person tries to masquerade as someone else by falsifying data and thereby attempting to gain illegitimate access and advantages. Recently, an increasing attention has been given to this research problem, as can be attested by the growing number of articles and the various competitions that appear in major biometric forums. This study presents a comprehensive overview of the recent advances in face anti-spoofing state-of-the-art, discussing existing methodologies, available benchmarking databases, reported results and, more importantly, the open issues and future research directions. As a case study for illustration, a face anti-spoofing method is described, which employs a colour local binary pattern descriptor to jointly analyse colour and texture available from the luminance and chrominance channels. Two publicly available databases are used for the analysis, and the importance of inter-database evaluation to attest the generalisation capabilities of an anti-spoofing method is discussed.

References

    1. 1)
      • 1. Akhtar, Z., Fumera, G., Marcialis, G.L., et al: ‘Evaluation of serial and parallel multibiometric systems under spoofing attacks’. IEEE Fifth Int. Conf. Biometrics: Theory, Applications and Systems (BTAS), 2012, pp. 283288.
    2. 2)
      • 2. Wen, D., Han, H., Jain, A.K.: ‘Face spoof detection with image distortion analysis’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 746761.
    3. 3)
      • 3. Labati, R., Genovese, A., Muñoz, E., et al: ‘Biometric recognition in automated border control: a survey’, ACM Comput. Surv., 2016, 49, (2), pp. 24:124:39.
    4. 4)
      • 4. Akhtar, Z., Fumera, G., Marcialis, G.L., et al: ‘Evaluation of multimodal biometric score fusion rules under spoof attacks’. 5th IAPR Int. Conf. Biometrics (ICB), New Delhi, 2012, pp. 402407.
    5. 5)
      • 5. Boulkenafet, Z., Komulainen, J., Hadid, A.: ‘Face anti-spoofing based on color texture analysis’. IEEE Int. Conf. Image Processing (ICIP), 2015, pp. 26362640.
    6. 6)
      • 6. Boulkenafet, Z., Komulainen, J., Hadid, A.: ‘Face spoofing detection using colour texture analysis’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (8), pp. 18181830.
    7. 7)
      • 7. Ratha, N.K., Connell, J.H., Bolle, R.M.: ‘Enhancing security and privacy in biometrics-based authentication systems’, IBM Syst. J., 2001, 40, (3), pp. 614634.
    8. 8)
      • 8. Akhtar, Z., Kale, S., Alfarid, N.: ‘Spoof attacks on multimodal biometric systems’. Int. Conf. Information and Network Technology (ICINT), Chennai, India, 29–30 April 2011, pp. 4651.
    9. 9)
      • 9. Akhtar, Z., Micheloni, C., Foresti, G.L.: ‘Biometric liveness detection: challenges and research opportunities’, IEEE Secur. Priv., 2015, 13, (5), pp. 6372.
    10. 10)
      • 10. Akhtar, Z., Luca Foresti, G.L.: ‘Face spoof attack recognition using discriminative image patches’, J. Electr. Comput. Eng., 2016, 2016, 14pp., Article ID 4721849.
    11. 11)
      • 11. Biggio, B., Akthar, Z., Fumera, G., et al: ‘Robustness of multi-modal biometric verification systems under realistic spoofing attacks’. 2011 Int. Joint Conf. Biometrics (IJCB), Washington, DC, 2011, pp. 16.
    12. 12)
      • 12. Galbally, J., Marcel, S., Fierrez, J.: ‘Image quality assessment for fake biometric detection: application to iris, fingerprint and face recognition’, IEEE Tran. Image Process., 2014, 23, (2), pp. 710724.
    13. 13)
      • 13. Maatta, J., Hadid, A., Pietikainen, M.: ‘Face spoofing detection from single images using texture and local shape analysis’, IET Biometrics, 2012, 1, (1), pp. 310.
    14. 14)
      • 14. Chingovska, I., Anjos, A.R.d., Marcel, S.: ‘Biometrics evaluation under spoofing attacks’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (12), pp. 22642276.
    15. 15)
      • 15. Bai, J., Ng, T., Gao, X., et al: ‘Is physics-based liveness detection truly possible with a single image?’. IEEE Int. Symp. on Circuits and Systems, 2010, pp. 34253428.
    16. 16)
      • 16. Bao, W., Li, H., Li, N., et al: ‘A liveness detection method for face recognition based on optical-flow field’. IEEE Int. Conf. Image Analysis and Signal Processing, 2009, pp. 233236.
    17. 17)
      • 17. Kollreider, K., Fronthaler, H., Bigun, J.: ‘Non-intrusive liveness detection by face images’, Image Vis. Comput., 2009, 27, (3), pp. 233244.
    18. 18)
      • 18. Li, J., Wang, Y., Tan, T., et al: ‘Live face detection based on the analysis of Fourier spectra’. Biometric Tech. for Human Identification, 2004, pp. 296303.
    19. 19)
      • 19. Li, X., Komulainen, J., Zhao, G., et al: ‘Generalized face anti-spoofing by detecting pulse from face videos’. 23rd Int. Conf. Pattern Recognition (ICPR), 2016.
    20. 20)
      • 20. Li, Y., Tan, X.: ‘An anti-photo spoof method in face recognition based on the analysis of Fourier spectra with sparse logistic regression’. Chinese Conf. Pattern Recognition (CCPR), 2009.
    21. 21)
      • 21. Pan, G., Sun, L., Wu, Z., et al: ‘Eyeblink-based anti-spoofing in face recognition from a generic webcamera’. Int. Conf. Computer Vision (ICCV), 2007, pp. 18.
    22. 22)
      • 22. Pan, G., Sun, L., Wu, Z., et al: ‘Monocular camera-based face liveness detection by combining eye-blink and scene context’, J. Telecommun. Syst., 2011, 47, (3), pp. 215225.
    23. 23)
      • 23. Tan, X., Li, Y., Liu, J., et al: ‘Face liveness detection from a single image with sparse low rank bilinear discriminative model’. 11th European Conf. Computer Vision (ECCV), 2010, vol. 6316, pp. 504517.
    24. 24)
      • 24. Zhang, Z., Yi, D., Lei, Z., et al: ‘Face liveness detection by learning multispectral reflectance distributions’. IEEE Int. Conf. Automatic Face and Gesture Recognition (FG 2011), 2011, pp. 436441.
    25. 25)
      • 25. Akhtar, Z., Fumera, G., Marcialis, G.L., et al: ‘Robustness evaluation of biometric systems under spoof attacks’. 16th Int. Conf. Image Analysis and Processing (ICIAP 2011), 2011, pp. 159168.
    26. 26)
      • 26. Akhtar, Z., Fumera, G., Marcialis, G.L., et al: ‘Robustness analysis of likelihood ratio score fusion rule for multimodal biometric systems under spoof attacks’. IEEE Int. Carnahan Conf. Security Technology (ICCST), 2011, pp. 18.
    27. 27)
      • 27. Akhtar, Z.: ‘Security of multimodal biometric systems against spoof attacks’. PhD thesis, University of Cagliari, Italy, 2012.
    28. 28)
      • 28. Chetty, G., Wagner, M.: ‘Liveness detection using cross-modal correlations in face-voice person authentication’. Proc. of Annual Conf. Int. Speech Communication Association (Interspeech), 2005, pp. 21812184.
    29. 29)
      • 29. Bustard, J.D., Carter, J.N., Nixon, M.S., et al: ‘Measuring and mitigating targeted biometric impersonation’, IET Biometrics, 2014, 3, (2), pp. 5561.
    30. 30)
      • 30. Galbally, J., Marcel, S., Fierrez, J.: ‘Biometric antispoofing methods: a survey in face recognition’, IEEE Access, 2014, 2, pp. 15301552.
    31. 31)
      • 31. Raghavendra, R., Busch, C.: ‘Presentation attack detection methods for face recognition systems – a comprehensive survey’, ACM Comput. Surv., 2017, 50, (1), pp. 8:18:37.
    32. 32)
      • 32. Olaye, M.: ‘Biometrics and facial recognition – a dangerous new frontier for data’, http://www.itproportal.com/features/biometrics-and-facial-recognition-a-dangerous-new-frontier-for-data/, accessed April 30, 2017.
    33. 33)
      • 33. Ratha, N.K., Connell, J.H., Bolle, M.R.: ‘An analysis of minutiae matching strength’. Int. Conf. Audio- and Video-Based Biometric Person Authentication (AVBPA), 2001, pp. 223228.
    34. 34)
      • 34. Thalheim, L., Krissler, J., Ziegler, P.M.: ‘Biometric access protection devices and their programs put to the test’, C'T Magazin fur Computer Technik, 2002.
    35. 35)
      • 35. Chingovska, I., Yang, J., Lei, Z., et al: ‘The 2nd competition on counter measures to 2D face spoofing attacks’. Proc. Int. Conf. Biometrics (ICB), 2013, pp. 16.
    36. 36)
      • 36. Erdogmus, N., Marcel, S.: ‘Spoofing face recognition with 3D masks’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (7), pp. 10841097.
    37. 37)
      • 37. Galbally, J., Marcel, S.: ‘Face anti-spoofing based on general image quality assessment’. Int. Conf. Pattern Recognition (ICPR), 2014, pp. 11731178.
    38. 38)
      • 38. Dhamecha, T.I., Nigam, A., Singh, R., et al: ‘Disguise detection and face recognition in visible and thermal spectrums’. Proc. IEEE Int. Conf. Biometrics (ICB), 2013, pp. 16.
    39. 39)
      • 39. Kose, N., Dugelay, J.L.: ‘Mask spoofing in face recognition and countermeasures’, Image Vis. Comput., 2014, 32, (10), pp. 779789.
    40. 40)
      • 40. Raghavendra, R., Raja, K.B., Busch, C.: ‘Presentation attack detection for face recognition using light field camera’, IEEE Trans. Image Process., 2015, 24, (3), pp. 10601075.
    41. 41)
      • 41. Ji, Z., Zhu, H., Wang, Q.: ‘LFHOG: a discriminative descriptor for live face detection from light field image’. IEEE Int. Conf. Image Processing (ICIP), 2016.
    42. 42)
      • 42. Kim, S., Ben, Y., Lee, S.: ‘Face liveness detection using a light field camera’, Sensors, 2014, 14, (12), pp. 7199.
    43. 43)
      • 43. Ali, A., Deravi, F., Hoque, S.: ‘Directional sensitivity of gaze-collinearity features in liveness detection’. Fourth Int. Conf. Emerging Security Technologies (EST), 2013, pp. 811.
    44. 44)
      • 44. Kollreider, K., Fronthaler, H., Bigun, J.: ‘Verifying liveness by multiple experts in face biometrics’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops, 2008, pp. 16.
    45. 45)
      • 45. Smith, D., Wiliem, A., Lovell, B.: ‘Face recognition on consumer devices: reflections on replay attacks’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 736745.
    46. 46)
      • 46. Akhtar, Z., Micheloni, C., Piciarelli, C., et al: ‘MoBio_LivDet: mobile biometric liveness detection’. Proc. 11th IEEE Int. Conf. Advanced Video and Signal Based Surveillance (AVSS), 2014, pp. 187192.
    47. 47)
      • 47. Anjos, A., Marcel, S.: ‘Counter-measures to photo attacks in face recognition: a public database and a baseline’. Proc. of IEEE Int. Joint Conf. Biometrics (IJCB), 2011, pp. 16.
    48. 48)
      • 48. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘An investigation of local descriptors for biometric spoofing detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 849863.
    49. 49)
      • 49. Komulainen, J., Hadid, A., Pietikainen, M., et al: ‘Complementary countermeasures for detecting scenic face spoofing attacks’. Proc. of Int. Conf. Biometrics, 2013, pp. 17.
    50. 50)
      • 50. Yang, J., Lei, Z., Liao, S., et al: ‘Face liveness detection with component dependent descriptor’. Proc. Int. Conf. Biometrics (ICB), 2013, pp. 16.
    51. 51)
      • 51. Zhang, Z., Yan, J., Liu, S., et al: ‘A face anti-spoofing database with diverse attacks’. Proc Int. Conf. Biometrics (ICB), 2012, pp. 2631.
    52. 52)
      • 52. Feng, L., Po, L.-M., Li, Y., et al: ‘Integration of image quality and motion cues for face anti-spoofing: a neural network approach’, J. Vis. Commun. Image Represent., 2016, 38, pp. 451460.
    53. 53)
      • 53. Erdogmus, N., Marcel, S.: ‘Spoofing attacks to 2D face recognition systems with 3d masks’. IEEE Int. Conf. Biometrics Special Interest Group (BIOSIG), 2013.
    54. 54)
      • 54. Pavlidis, I., Symosek, P.: ‘The imaging issue in an automatic face/disguise detection system’. Proc. IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS), 2000, pp. 1524.
    55. 55)
      • 55. Sepas-Moghaddam, A., Correia, P., Pereira, F.: ‘Light field local binary patterns description for face recognition’. IEEE Int. Conf. Image Processing (ICIP), 2017.
    56. 56)
      • 56. Rudd, E.M., Günther, M., Boult, T.E.: ‘Paraph: presentation attack rejection by analyzing polarization hypotheses’. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 171178.
    57. 57)
      • 57. Chingovska, I., Anjos, A., Marcel, S.: ‘On the effectiveness of local binary patterns in face anti-spoofing’. Int. Conf. Biometrics Special Interest Group (BIOSIG), 2012, pp. 17.
    58. 58)
      • 58. Costa-Pazo, A., Bhattacharjee, S., Vazquez-Fernandez, E., et al: ‘The replay-mobile face presentation-attack database’. Int. Conf. Biometrics Special Interests Group (BIOSIG), 2016.
    59. 59)
      • 59. Boulkenafet, Z., Komulainen, J., Lei, L., et al: ‘Oulu-npu: a mobile face presentation attack database with real-world variations’. IEEE Int. Conf. Automatic Face and Gesture Recognition, 2017.
    60. 60)
      • 60. Bonnier, N.: ‘Contribution to spatial gamut mapping algorithms’. Doctoral dissertation, Telecom ParisTech, 2008.
    61. 61)
      • 61. Lukac, R., Plataniotis, K.N.: ‘Color image processing: methods and applications’ (CRC press, 2006).
    62. 62)
      • 62. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    63. 63)
      • 63. Choi, J.Y., Plataniotis, K.N., Ro, Y.M.: ‘Using colour local binary pattern features for face recognition’. Proc. IEEE Int. Conf. Image Processing (ICIP), 2010, pp. 45414544.
    64. 64)
      • 64. Chang, C.C., Lin, C.J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol. (TIST), 2011, 2, (3), p. 27.
    65. 65)
      • 65. de Freitas Pereira, T., Anjos, A., De Martino, J.M., et al: ‘Can face anti-spoofing countermeasures work in a real world scenario?’. Int. Conf. Biometrics (ICB), 2013, pp. 18.
    66. 66)
      • 66. de Freitas Pereira, T., Anjos, A., De Martino, J.M., et al: ‘LBP–TOP based countermeasure against face spoofing attacks’. Asian Conf. Computer Vision Workshops, 2012, pp. 121132.
    67. 67)
      • 67. Bharadwaj, S., Dhamecha, T.I., Vatsa, M., et al: ‘Face anti-spoofing via motion magnification and multifeature videolet aggregation’.
    68. 68)
      • 68. Menotti, D., Chiachia, G., Pinto, A.: ‘Deep representations for iris, face, and fingerprint spoofing detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 864879.
    69. 69)
      • 69. Tax, D.: ‘One-class classiïňĄcation: concept-learning in the absence of counter-examples’. Doctoral Dissertation, University of Delft, The Netherlands, 2001.
    70. 70)
      • 70. Alegre, F., Amehraye, A., Evans, N.: ‘A one-class classification approach to generalised speaker verification spoofing countermeasures using local binary patterns’. Sixth Int. Conf. Biometrics: Theory, Applications and Systems (BTAS), 2013, pp. 18.
    71. 71)
      • 71. Sequeira, A.F., Thavalengal, S., Ferryman, J., et al: ‘A realistic evaluation of iris presentation attack detection’. 39th IEEE Int. Conf. Telecommunications and Signal Processing (TSP), 2016, pp. 660664.
    72. 72)
      • 72. Scheirer, W.J., Rocha, A.R., Sapkota, A., et al: ‘Toward open set recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (7), pp. 17571772.
    73. 73)
      • 73. Rudd, E.M., Jain, L.P., Scheirer, W.J., et al: ‘The extreme value machine’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, doi: org/10.1109/TPAMI.2017.2707495.
    74. 74)
      • 74. Rattani, A., Scheirer, W., Ross, A.: ‘Open set fingerprint spoof detection across novel fabrication materials’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (11), pp. 24472460.
    75. 75)
      • 75. Ferrara, M., Franco, A., Maltoni, D.: ‘The magic passport’. Int. Joint Conf. Biometrics (IJCB), 2014.
    76. 76)
      • 76. Schwartz, W.R., Rocha, A., Edrini, H.P.: ‘Face spoofing detection through partial least squares and low-level descriptors’. Int. Joint Conf. Biometrics (IJCB), 2011, pp. 18.
    77. 77)
      • 77. Tronci, R., Muntoni, D., Fadda, G., et al: ‘Fusion of multiple clues for photo-attack detection in face recognition systems’. Int. Joint Conf. Biometrics (IJCB), 2011, pp. 16.
    78. 78)
      • 78. Yan, J., Zhang, Z., Lei, Z., et al: ‘Face liveness detection by exploring multiple scenic clues’. 12th Int. Conf. Control Automation Robotics and Vision (ICARCV), 2012, pp. 188193.
    79. 79)
      • 79. Chakka, M., Anjos, A., Marcel, S., et al: ‘Competition on counter measures to 2-d facial spoofing attacks’. Int. Joint Conf. Biometrics (IJCB), 2011 pp. 16.
    80. 80)
      • 80. Kittler, J., Hatef, M., Duin, R., et al: ‘On combining classifiers’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (3), pp. 226239.
    81. 81)
      • 81. Chingovska, I., Anjos, A., Marcel, S.: ‘Anti-spoofing in action: joint operation with a verification system’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2013, pp. 98104.
    82. 82)
      • 82. Pan, G., Sun, L., Wu, Z., et al: ‘Monocular camera-based face liveness detection by combining eyeblink and scene context’, Telecommun. Syst., 2011, 47, (3-4), pp. 215225.
    83. 83)
      • 83. Komulainen, J., Hadid, A., Pietikäinen, M.: ‘Context based face anti-spoofing’. Int. Conf. Biometrics: Theory, Applications and Systems (BTAS), 2013.
    84. 84)
      • 84. Patel, K., Han, H., Jain, A.K.: ‘Cross-database face antispoofing with robust feature representation’. Chinese Conf. Biometric Recognition (CCBR), 2016, pp. 611619.
    85. 85)
      • 85. Patel, K., Han, H., Jain, A.K.: ‘Secure face unlock: spoof detection on smartphones’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (10), pp. 22682283.
    86. 86)
      • 86. Yang, J., Lei, Z., Li, S.Z.: ‘Learn convolutional neural network for face anti-spoofing’, CoRR, 2014, abs/1408.5601, 8pp.
    87. 87)
      • 87. Manjani, I., Tariyal, S., Vatsa, M., et al: ‘Detecting silicone mask based presentation attack via deep dictionary learning’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (7), pp. 17131723.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0089
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address