http://iet.metastore.ingenta.com
1887

Strengths and weaknesses of deep learning models for face recognition against image degradations

Strengths and weaknesses of deep learning models for face recognition against image degradations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Convolutional neural network (CNN) based approaches are the state of the art in various computer vision tasks including face recognition. Considerable research effort is currently being directed toward further improving CNNs by focusing on model architectures and training techniques. However, studies systematically exploring the strengths and weaknesses of existing deep models for face recognition are still relatively scarce. In this paper, we try to fill this gap and study the effects of different covariates on the verification performance of four recent CNN models using the Labelled Faces in the Wild dataset. Specifically, we investigate the influence of covariates related to image quality and model characteristics, and analyse their impact on the face verification performance of different deep CNN models. Based on comprehensive and rigorous experimentation, we identify the strengths and weaknesses of the deep learning models, and present key areas for potential future research. Our results indicate that high levels of noise, blur, missing pixels, and brightness have a detrimental effect on the verification performance of all models, whereas the impact of contrast changes and compression artefacts is limited. We find that the descriptor-computation strategy and colour information does not have a significant influence on performance.

References

    1. 1)
      • 1. Bruce, N.D., Catton, C., Janjic, S.: ‘A deeper look at saliency: feature contrast, semantics, and beyond’. Proc. the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 516524.
    2. 2)
      • 2. Li, G., Yu, Y.: ‘Deep contrast learning for salient object detection’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2016.
    3. 3)
      • 3. Gidaris, S., Komodakis, N.: ‘Object detection via a multi-region and semantic segmentation-aware CNN model’. Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 11341142.
    4. 4)
      • 4. Ren, S., He, K., Girshick, R., et al: ‘Faster R-CNN: towards real-time object detection with region proposal networks’. Advances in Neural Information Processing Systems, 2015, pp. 9199.
    5. 5)
      • 5. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580587.
    6. 6)
      • 6. Gidaris, S., Komodakis, N.: ‘LocNet: improving localization accuracy for object detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 789798.
    7. 7)
      • 7. Liu, N., Han, J.: ‘DHSNet: deep hierarchical saliency network for salient object detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 678686.
    8. 8)
      • 8. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 770778.
    9. 9)
      • 9. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 19.
    10. 10)
      • 10. Alahi, A., Goel, K., Ramanathan, V., et al: ‘Social LSTM: human trajectory prediction in crowded spaces’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 961971.
    11. 11)
      • 11. Wang, N., Yeung, D.Y.: ‘Learning a deep compact image representation for visual tracking’. Advances in neural information processing systems, 2013, pp. 809817.
    12. 12)
      • 12. Wang, L., Ouyang, W., Wang, X., et al: ‘STCT: sequentially training convolutional networks for visual tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 13731381.
    13. 13)
      • 13. Badrinarayanan, V., Handa, A., Cipolla, R.: ‘SegNet: a deep convolutional encoder–decoder architecture for robust semantic pixel-wise labelling’, arXiv preprint arXiv:150507293, 2015.
    14. 14)
      • 14. Chen, L.C., Papandreou, G., Kokkinos, I., et al: ‘Semantic image segmentation with deep convolutional nets and fully connected CRFs’, arXiv preprint arXiv:14127062, 2014.
    15. 15)
      • 15. Sharma, A., Tuzel, O., Jacobs, D.W.: ‘Deep hierarchical parsing for semantic segmentation’. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 530538.
    16. 16)
      • 16. Huang, G.B., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. Technical Report, 07-49, University of Massachusetts, Amherst, 2007.
    17. 17)
      • 17. Taigman, Y., Yang, M., Ranzato, M., et al: ‘Deepface: closing the gap to human-level performance in face verification’. CVPR, 2014, pp. 17011708.
    18. 18)
      • 18. Schroff, F., Kalenichenko, D., Philbin, J.: ‘FaceNet: a unified embedding for face recognition and clustering’, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815823.
    19. 19)
      • 19. Parkhi, O.M., Vedaldi, A., Zisserman, A.: ‘Deep face recognition’. BMVC, 2015, p. 6.
    20. 20)
      • 20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems, 2012, pp. 10971105.
    21. 21)
      • 21. Szegedy, C., Vanhoucke, V., Ioffe, S., et al: ‘Rethinking the inception architecture for computer vision’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 28182826.
    22. 22)
      • 22. Iandola, F.N., Han, S., Moskewicz, M.W., et al: ‘SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 mb model size’, arXiv preprint arXiv:160207360, 2016.
    23. 23)
      • 23. Jain, A.K., Li, S.Z.: ‘Handbook of face recognition’ (Springer, 2011).
    24. 24)
      • 24. Ghazi, M.M., Ekenel, H.K.: ‘A comprehensive analysis of deep learning based representation for face recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2016, pp. 3441.
    25. 25)
      • 25. Karahan, S., Yildirum, M.K., Kirtac, K., et al: ‘How image degradations affect deep CNN-based face recognition?’. 2016 Int. Conf. Biometrics Special Interest Group (BIOSIG), 2016, pp. 15.
    26. 26)
      • 26. Dodge, S., Karam, L.: ‘Understanding how image quality affects deep neural networks’. 2016 Eighth Int. Conf. Quality of Multimedia Experience (QoMEX), 2016, pp. 16.
    27. 27)
      • 27. Chatfield, K., Simonyan, K., Vedaldi, A., et al: ‘Return of the devil in the details: delving deep into convolutional nets’, arXiv preprint arXiv:14053531, 2014.
    28. 28)
      • 28. Richard-Webster, B., Anthony, S.E., Scheirer, W.J.: ‘Psyphy: a psychophysics driven evaluation framework for visual recognition’, arXiv preprint arXiv:161106448, 2016.
    29. 29)
      • 29. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., et al: ‘Discriminative unsupervised feature learning with convolutional neural networks’. Advances in Neural Information Processing Systems, 2014, pp. 766774.
    30. 30)
      • 30. Zeiler, M.D., Fergus, R.: ‘Visualizing and understanding convolutional networks’. European Conf. Computer Vision – ECCV, 2014, pp. 818833.
    31. 31)
      • 31. Lenc, K., Vedaldi, A.: ‘Understanding image representations by measuring their equivariance and equivalence’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 991999.
    32. 32)
      • 32. Huang, G.B., Miller, E.L.: ‘Labeled faces in the wild: updates and new reporting procedures’. Technical Report, UM-CS-2014-003, 2014.
    33. 33)
      • 33. Razavian, A.S., Azizpour, H., Sullivan, J., et al: ‘CNN features off-the-shelf: an astounding baseline for recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2014, pp. 806813.
    34. 34)
      • 34. Chaib, S., Yao, H., Gu, Y., et al: ‘Deep feature extraction and combination for remote sensing image classification based on pre-trained CNN models’. Ninth Int. Conf. Digital Image Processing (ICDIP 2017), 2017, pp. 104203D104203D.
    35. 35)
      • 35. Russakovsky, O., Deng, J., Su, H., et al: ‘ImageNet large scale visual recognition challenge’, Int. J. Comput. Vis., 2015, 115, (3), pp. 211252.
    36. 36)
      • 36. Kingma, D.P., Ba, J.L.: ‘Adam: a method for stochastic optimization’. Int. Conf. Learning Representation, 2015.
    37. 37)
      • 37. Kazemi, V., Sullivan, J.: ‘One millisecond face alignment with an ensemble of regression trees’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp. 18671874.
    38. 38)
      • 38. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770778.
    39. 39)
      • 39. Sun, Y., Chen, Y., Wang, X., et al: ‘Deep learning face representation by joint identification-verification’. Advances in Neural Information Processing Systems, 2014, pp. 19881996.
    40. 40)
      • 40. Chen, J.C., Sankaranarayanan, S., Patel, V.M., et al: ‘Unconstrained face verification using Fisher vectors computed from frontalized faces’. 2015 IEEE 7th Int. Conf. Biometrics Theory, Applications and Systems (BTAS), 2015, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0083
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address