http://iet.metastore.ingenta.com
1887

Score-level fusion using generalized extreme value distribution and DSmT, for multi-biometric systems

Score-level fusion using generalized extreme value distribution and DSmT, for multi-biometric systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Human recognition in a multi-biometric system is performed by combining biometric clues from different sources (multiple sensors, units, algorithms, samples and modalities) at different levels (sensor, feature, score, rank and decision level). Low computational complexity and adequate data for fusion make the score-level fusion a preferable option over other levels of fusion. However, incompatibility issue prevails at this level as scores obtained from different uni-biometric systems are disparate in nature. This disparity can be resolved by using score normalisation before fusion. This study first analysed the effect of generalised extreme value distribution-based score normalisation technique on different fusion techniques and then proposes an efficient score fusion technique based on Dezert–Smarandache theory (DSmT). A unique blend of belief assignment and decision-making methods in the DSmT framework is proposed for score-level fusion. For evaluation of the proposed method, experiments are performed on multi-algorithm, multi-unit and multi-modal biometrics systems created from three publicly available datasets: (i) NIST BSSR1 multi-biometric score database, (ii) face recognition grand challenge (FRGC) V2.0 and (iii) LG4000 iris dataset. Comparative studies of performance analysis show the efficiency of the authors’ proposed method over other recently published state-of-the-art fusion methods.

References

    1. 1)
      • 1. Scheirer, W., Rocha, A., Micheals, R., et al: ‘Robust fusion: extreme value theory for recognition score normalization’. European Conf. Computer Vision, 2010, pp. 481495.
    2. 2)
      • 2. Li, Z., Vinyals, O., Baker, H., et al: ‘Feature learning using generalized extreme value distribution based k-means clustering’. Int. Conf. Pattern Recognition, 2012, pp. 15381541.
    3. 3)
      • 3. Fragoso, V., Sen, P., Rodriguez, S., et al: ‘EVSAC: accelerating hypotheses generation by modeling matching scores with extreme value theory’. IEEE Int. Conf. Computer Vision, 2013, pp. 24722479.
    4. 4)
      • 4. Gibert, X., Patel, V.M., Chellappa, R.: ‘Sequential score adaptation with extreme value theory for robust railway track inspection’. IEEE Int. Conf. Computer Vision Workshops, 2015, pp. 131138.
    5. 5)
      • 5. NIST: ‘Biometric scores set (BSSR1)’. Available at https://www.nist.gov/itl/iad/image-group/nist-biometric-scores-set-bssr1, 2004.
    6. 6)
      • 6. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 947954.
    7. 7)
      • 7. LG 4000 iris image database. Available at http://biometrics.idealtest.org/, 2002.
    8. 8)
      • 8. Ross, A., Jain, A., Nandakumar, K.: ‘Score normalization in multimodal biometric systems’, Pattern Recognit., 2005, 38, (12), pp. 22702285.
    9. 9)
      • 9. Snelick, R., Uludag, U., Mink, A., et al: ‘Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 450455.
    10. 10)
      • 10. Ross, A., Jain, A.: ‘Information fusion in biometrics’, Pattern Recognit. Lett., 2003, 24, (13), pp. 21152125.
    11. 11)
      • 11. Connaughton, R., Bowyer, K.W., Flynn, P.J.: ‘Fusion of face and iris biometrics’ (Handbook of Iris Recognition, Springer London, 2016), pp. 397415.
    12. 12)
      • 12. Chaa, M., Boukezzoula, N.-E., Attia, A.: ‘Score-level fusion of two-dimensional and three-dimensional palmprint for personal recognition systems’, J. Electron. Imaging, 2017, 26, p. 13018.
    13. 13)
      • 13. Eisenbach, M., Kolarow, A., Vorndran, A.: ‘Evaluation of multi feature fusion at score-level for appearance-based person re-identification’. Int. Joint Conf. Neural Networks, 2015, pp. 469476.
    14. 14)
      • 14. Zheng, L., Wang, S., Tian, L., et al: ‘Query-adaptive late fusion for image search and person re-identification’. IEEE Conf. Computer Vision and Pattern Recognition, June 2015.
    15. 15)
      • 15. Kabir, W., Ahmad, M.O., Swamy, M.N.S.: ‘Score reliability based weighting technique for score-level fusion in multi-biometric systems’. IEEE Winter Conf. Applications of Computer Vision, 2016, pp. 17.
    16. 16)
      • 16. Artabaz, S., Sliman, L., Dellys, H.N., et al: ‘Multibiometrics enhancement using quality measurement in score level fusion’, in Janusz, K. (Ed.): ‘Advances in intelligent systems and computing’, vol. 557 (Springer, 2017), pp. 12871297.
    17. 17)
      • 17. Dass, S.C., Nandakumar, K., Jain, A.K.: ‘A principled approach to score level fusion in multimodal biometric systems’. Audio and Video-Based Biometric Person Authentication, 2005 (LNCS, 3546), pp. 10491058.
    18. 18)
      • 18. Marval, P.L.R., Aoyama, S., Ito, K., et al: ‘Score level fusion of multibiometrics using local phase array’. Advances in Multimedia Information Processing, 2015, vol. 9315.
    19. 19)
      • 19. Nandakumar, K., Chen, Y., Dass, S.C., et al: ‘Likelihood ratio-based biometric score fusion’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 342347.
    20. 20)
      • 20. Mukherjee, S., Pal, K., Majumder, B.P., et al: Differential evolution based score level fusion for multi-modal biometric systems, Computational Intelligence in Biometrics and Identity Management (CIBIM), 2014, pp. 3844.
    21. 21)
      • 21. Liang, Y., Ding, X., Liu, C., et al: ‘Combining multiple biometric traits with an order-preserving score fusion algorithm’, Neurocomputing, 2016, 171, pp. 252261.
    22. 22)
      • 22. Ben-Yacoub, S., Abdeljaoued, Y., Mayoraz, E.: ‘Fusion of face and speech data for person identity verification’, IEEE Trans. Neural Netw., 1999, 10, (5), pp. 10651074.
    23. 23)
      • 23. Ross, A.A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics (international series on biometrics’ (Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2006).
    24. 24)
      • 24. Castrillón-Santana, M., Lorenzo-Navarro, J., Ramón-Balmaseda, E.: ‘Multiscale score level fusion of local descriptors for gender classification in the wild’, Multimedia Tools Appl.., 2017, 76, (4), pp. 46954711.
    25. 25)
      • 25. Safavi, S., Mporas, I.: ‘Improving performance of speaker identification systems using score level fusion of two modes of operation’. International Conference on Speech and Computer, 2017 (LNCS, 10458), pp. 438444.
    26. 26)
      • 26. Zheng, Y., Blasch, E.: ‘An exploration of the impacts of three factors in multimodal biometric score fusion: score modality, recognition method, and fusion process’, J. Adv. Inf. Fusion, 2014, 9, (2), pp. 124137.
    27. 27)
      • 27. Artabaz, S., Sliman, L., Benatchba, K., et al: ‘Score level fusion scheme in hybrid multibiometric system’. Advances in Visual Informatics: Int. Visual Informatics Conf., 2015, pp. 166177.
    28. 28)
      • 28. Shafer, G.: ‘A mathematical theory of evidence’ (Princeton University Press, Princeton, 1976).
    29. 29)
      • 29. Al-Ani, A., Mohamed, D.: ‘A new technique for combining multiple classifiers using the Dempster–Shafer theory of evidence’, J. Artif. Intell. Res., 2002, 17, pp. 333361.
    30. 30)
      • 30. Mezai, L., Hachouf, F., Bengherabi, M.: ‘Score fusion of face and voice using Dempster–Shafer theory for person authentication’. Intelligent Systems Design and Applications (ISDA), 2011, pp. 894899.
    31. 31)
      • 31. Singh, R., Vatsa, A., Noore, M., et al: ‘Dempster–Shafer theory based classifier fusion for improved fingerprint verification performance’, Comput. Vis., Graph. Image Process., 2006, 4338, pp. 941949.
    32. 32)
      • 32. Kisku, D.R., Sing, J.K., Gupta, P.: ‘Multibiometrics belief fusion’. Int. Conf. Machine Vision, 2009, pp. 3740.
    33. 33)
      • 33. Mezai, L., Hachouf, F.: ‘Score-level fusion of face and voice using particle swarm optimization and belief functions’, IEEE Trans. Hum.-Mach. Syst., 2015, 45, (6), pp. 761772.
    34. 34)
      • 34. Nguyen, K., Denman, S., Sridharan, S., et al: ‘Score-level multibiometric fusion based on Dempster–Shafer theory incorporating uncertainty factors’, IEEE Trans. Hum.-Mach. Syst., 2015, 45, (1), pp. 132140.
    35. 35)
      • 35. Smarandache, F., Dezert, J.: ‘Advances and applications of DSmT for information fusion’, vol. 3 (American Research Press, United States, 2009), pp. 760.
    36. 36)
      • 36. Singh, R., Vatsa, M., Noore, A.: ‘Integrated multilevel image fusion and match score fusion of visible and infrared face images for robust face recognition’, Pattern Recognit., 2008, 41, (3), pp. 880893.
    37. 37)
      • 37. Vatsa, M., Singh, R., Noore, A.: ‘Unification of evidence-theoretic fusion algorithms: a case study in level-2 and level-3 fingerprint features’, IEEE Trans. Syst., Man Cybern. A, Syst. Hum., 2009, 39, (1), pp. 4756.
    38. 38)
      • 38. Vatsa, M., Singh, R., Noore, A., et al: ‘On the dynamic selection of biometric fusion algorithms’, IEEE Trans. Inf. Forensics Sec., 2010, 5, (3), pp. 470479.
    39. 39)
      • 39. Abbas, N., Chibani, Y., Hadjadji, B.: ‘A DSmT based combination systems for handwritten signature verification’, in Smarandache, F., Dezert, J. (Eds.): ‘Advances and applications of DSmT for information fusion. Collected works’, (American Research Press, United States, 2015), vol. 4, pp. 423440.
    40. 40)
      • 40. Jasang, A., Munch-Maller, T.H.: ‘Biometric data fusion based on subjective logic’. Int. Conf. Information Fusion, 2014, pp. 18.
    41. 41)
      • 41. Wasnik, P., Schafer, K., Ramachandra, R., et al: ‘Fusing biometric scores using subjective logic for gait recognition on smartphone’. Int. Conf. Biometrics Special Interest Group, 2017, pp. 15.
    42. 42)
      • 42. Fakhar, K., Aroussi, M.E., Saidi, M.N., et al: ‘Fuzzy pattern recognition-based approach to biometric score fusion problem’, Fuzzy Sets Syst., 2016, 305, pp. 149159.
    43. 43)
      • 43. Sharma, R., Das, S., Joshi, P.: ‘Score normalization in multimodal systems using generalized extreme value distribution’. British Machine Vision Conf. (BMVC), 2015, vol. 1, pp. 131.1131.12.
    44. 44)
      • 44. He, M., Horng, S.-J., Fan, P., et al: ‘Performance evaluation of score level fusion in multimodal biometric systems’, Pattern Recognit., 2010, 4, (5), pp. 17891800.
    45. 45)
      • 45. Dempster, A.P.: ‘A generalization of Bayesian inferenceJournal of the Royal Statistical Society, 1968, vol. 30, pp. 73104.
    46. 46)
      • 46. Zadeh, L.A.: ‘A simple view of the Dempster–Shafer theory of evidence and its implication for the rule of combination’, AI Mag., 1986, 7, (2), pp. 8590.
    47. 47)
      • 47. Dubois, D., Prade, H.: ‘On the unicity of Dempster rule of combination’, Int. J. Intell. Syst., 1986, 1, (2), pp. 133142.
    48. 48)
      • 48. Voorbraak, F.: ‘On the justification of Dempster's rule of combination’, Artif. Intell., 1991, 48, (2), pp. 171197.
    49. 49)
      • 49. Smets, P.: ‘The combination of evidence in the transferable belief model’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (5), pp. 447458.
    50. 50)
      • 50. Saaty, R.W.: ‘The analytic hierarchy process – what it is and how it is used’, Math. Model., 1987, 9, (3), pp. 161176.
    51. 51)
      • 51. Brunelli, M.: ‘Introduction to the analytic hierarchy process’, in (Eds.): ‘Springer briefs in operations research’ (Springer International Publishing, United States, 2015), p. 83.
    52. 52)
      • 52. Bergamini, C., Oliveira, L.S., Koerich, A.L., et al: ‘Combining different biometric traits with one-class classification’, Signal Process., 2009, 89, (11), pp. 21172127.
    53. 53)
      • 53. Gutschoven, B., Verlinde, P.: ‘Multi-modal identity verification using support vector machines (SVM)’, Information Fusion, 2000, vol. 2, pp. 38.
    54. 54)
      • 54. Duda, R.O., Hart, P.E., Stork, D.G.:Pattern classification’ (Wiley, United States, 2000, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0076
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address