http://iet.metastore.ingenta.com
1887

Biometric-enabled watchlists technology

Biometric-enabled watchlists technology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For Entry-Exit technologies, such as US VISIT and Smart Borders (e-borders), a watchlist normally contains high-quality biometric traits and is checked only against visitors. The situation can change drastically if low-quality images are added into the watchlist. Motivated by this fact, we introduce a systematic approach to assessing the risk of travellers using a biometric-enabled watchlist where some latency of the biometric traits is allowed. The main results presented herein include: (1) a taxonomical view of the watchlist technology, and (2) a novel risk assessment technique. For modelling the watchlist landscape, we propose a risk categorisation using the Doddington metric. We evaluate via experimental study on large-scale facial and fingerprint databases, the risks of impersonation and mis-identification in various screening scenarios. Other contributions include a study of approaches to designing a biometric-enabled watchlist for e-borders: a) risk control and b) improving performance of the e-border via integrating the interview supporting machines.

References

    1. 1)
      • 1. Technical study on smart borders’ (EU Commission B-1049, 2014), pp. 1443.
    2. 2)
      • 2. Bigo, D., Carrera, S., Hayes, B., et al: ‘Justice and home affairs databases and a smart borders system at EU external borders: an evaluation of current and forthcoming proposals’, CEPS Papers Liberty Security, 2012, (52), pp. 197.
    3. 3)
      • 3. Government Accountability Office: ‘Data mining: early attention to privacy in developing a key DHS program could reduce risks,’ (GAO-07-293 2007), pp. 135.
    4. 4)
      • 4. Automated Passport Control Service’. Available at https://www.cbp.gov/travel/us-citizens/apc, accessed 22 February 2017.
    5. 5)
      • 5. Kamgar-Parsi, B., Lawson, W., Kamgar-Parsi, B.: ‘Toward development of a face recognition system for watchlist surveillance’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 33, (10), pp. 19251937.
    6. 6)
      • 6. United States Visitor and Immigrant Status Indicator Technology: ‘Biometric standards requirements for US-VISIT, version 1.0’ (US Department of Homeland Security, 2010), pp. 170.
    7. 7)
      • 7. Cabinet Office: ‘Identity fraud: a study’ (UK Cabinet Office, 2002), pp. 192.
    8. 8)
      • 8. Research and Development Unit.: ‘Best practice technical guidelines for automated border control (ABC) systems’ (Frontex, 2012), pp. 165.
    9. 9)
      • 9. IATA Press Release No. 57’: Available at http://www.iata.org/pressroom/pr/Pages/2014-10-16-01.aspx, accessed 8 October 2016.
    10. 10)
      • 10. US Department of Justice.: ‘Follow-up audit of the terrorist screening center’ (Office of the Inspector General Audit Division, 2007), pp. 1106.
    11. 11)
      • 11. Florence, J., Friedman, R.: ‘Profiles in terror: a legal framework for the behavioral profiling paradigm’, George Mason Law Rev., 2010, 17, (2), pp. 423481.
    12. 12)
      • 12. Bourlai, T., Ross, A., Jain, A.K.: ‘Restoring degraded face images: a case study in matching faxed, printed, and scanned photos’, IEEE Trans. Inf. Forensics Security, 2011, 6, (2), pp. 371384.
    13. 13)
      • 13. Orandi, S., McCabe, R.M.: ‘Mobile ID device best practice recommendation version 1.0’ (NIST Information Access Division Information Technology Laboratory, 2009).
    14. 14)
      • 14. Fiondella, L., Gokhale, S.S., Lownes, N., et al: ‘Security and performance analysis of a passenger screening checkpoint for mass-transit systems’. Proc. IEEE Conf. Technologies for Homeland Security, Waltham, USA, November 2012, pp. 312318.
    15. 15)
      • 15. Hayes, B., Vermeulen, M.: ‘Borderline the EU's new border surveillance initiatives’ (Heinrich Boll Foundation, 2012).
    16. 16)
      • 16. Jain, A.K., Ross, A.: ‘Bridging the gap: From biometrics to forensics’, Philos. Trans. R. Soc. B, 2015, 370, (1674), pp. 110.
    17. 17)
      • 17. Hildebrandt, M., Gutwirth, S.: ‘Profiling the European citizen: cross-disciplinary perspectives’ (Springer Netherlands, 2008).
    18. 18)
      • 18. Yanushkevich, S.N., Eastwood, S.C., Drahansky, M., et al: ‘Understanding and taxonomy of uncertainty in modelling, simulation, and risk profiling for border control automation’, J. Defense Modell. Simul. Appl. Methodol. Technol., 2016, pp. 115.
    19. 19)
      • 19. Smarandache, F., Dezert, J., Tacnet, J.-M.: ‘Fusion of sources of evidence with different importances and reliabilities’. 13th Conf. Information Fusion (FUSION), Edinburgh, UK, July 2010, pp. 18.
    20. 20)
      • 20. Menotti, D., Chiachia, G., Pinto, A., et al: ‘Deep representations for iris, face, and fingerprint spoofing detection’, IEEE Trans. Inf. Forensics Security, 2015, 10, (4), pp. 864879.
    21. 21)
      • 21. Eastwood, S.C., Shmerko, V.P., Yanushkevich, , et al: ‘Biometric-enabled authentication machines: a survey of open-set real-world applications’, IEEE Trans. Hum. Mach. Syst., 2016, 46, (2), pp. 231242.
    22. 22)
      • 22. Ball, K., Haggerty, K.D., Lyon, D. (Eds.): ‘The Routledge handbook of surveillance studies’ (London: Routledge, 2012).
    23. 23)
      • 23. Butt, M., Marti, S., Nouak, A., et al: ‘Towards e-passport duplicate enrollment check in the European Union’. Proc. European Intelligence and Security Informatics Conf., Uppsala, Sweden, August 2013, pp. 247251.
    24. 24)
      • 24. DeCann, B., Ross, A.: ‘Has this person been encountered before?: modelling an anonymous identification system’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops, Providence, USA, June 2012, pp. 8996.
    25. 25)
      • 25. Spreeuwers, L.J., Hendrikse, A., Gerritsen, K.: ‘Evaluation of automatic face recognition for automatic border control on actual data recorded of travellers at Schiphol airport’. Proc. Int. Conf. Biometrics Special Interest Group, Darmstadt, Germany, September 2012, pp. 16.
    26. 26)
      • 26. Kimura, T., Makihara, Y., Muramatsu, D., et al: ‘Single sensor-based multi-quality multi-modal biometric score database and its performance evaluation’. Proc. Int. Conf. Biometrics, Patong, Thailand, May 2015, pp. 519526.
    27. 27)
      • 27. Best-Rowden, L., Han, H., Otto, C., et al: ‘Unconstrained face recognition: Identifying a person of interest from a media collection’, IEEE Trans. Inf. Forensics Security, 2014, 9, (12), pp. 21442157.
    28. 28)
      • 28. Liao, S., Jain, A.K., Li, S.Z.: ‘Partial face recognition: alignment-free approach’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (5), pp. 11931205.
    29. 29)
      • 29. Hunter, D., Tiddeman, B., Perrett, D.: ‘Facial ageing’, in Wilkinson, C., Rynn, C., (Eds.): ‘Craniofacial identification’ (Cambridge University Press, 2012), pp. 5767.
    30. 30)
      • 30. Geng, X., Zhou, Z.H., Smith Miles, K.: ‘Automatic age estimation based on facial aging patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (12), pp. 22342240.
    31. 31)
      • 31. Labati, D.R., Genovese, A., Ballester, M.E., et al: ‘Automatic classification of acquisition problems affecting fingerprint images in automated border controls’. Proc. IEEE Symp. Series on Computational Intelligence, December 2015, pp. 354361.
    32. 32)
      • 32. Munagani, I., Hsiao, M.S., Abbott, A.L.: ‘On the uniqueness of fingerprints via mining of statistically rare features’. IEEE Int. Symp. Technologies for Homeland Security, Waltham, USA, April 2015, pp. 16.
    33. 33)
      • 33. Cowell, R.G.: ‘Finex: a probabilistic expert system for forensic identification’, Forensic Sci. Int., 2003, 134, (2), pp. 196206.
    34. 34)
      • 34. Taroni, F., Biedermann, A., Bozza, S., et al: ‘Bayesian networks and probabilistic inference in forensic science’ (John Wiley & Sons, 2014).
    35. 35)
      • 35. Frowd, C.: ‘Facial recall and computer composites’, in Wilkinson, C., Rynn, C. (Eds.): ‘Craniofacial identification’ (Cambridge University Press, 2012), pp. 4256.
    36. 36)
      • 36. Doddington, G., Liggett, W., Martin, A., et al: ‘Sheep, goats, lambs and wolves: a statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation’. Proc. Int. Conf. Spoken Language Processing, Sydney, Australia, December 1998, pp. 14.
    37. 37)
      • 37. Bustard, J.D., Carter, J.N., Nixon, M.S.: ‘Targeted impersonation as a tool for the detection of biometric system vulnerabilities’. Proc. IEEE Int. Conf. Biometrics: Theory, Applications and Systems, Arlington, USA, October 2013, pp. 16.
    38. 38)
      • 38. Poh, N., Kittler, J., Bourlai, T.: ‘Quality-based score normalization with device qualitative information for multimodal biometric fusion’, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 2010, 40, (3), pp. 539554.
    39. 39)
      • 39. Yager, N., Dunstone, T.: ‘The biometric menagerie’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (2), pp. 220230.
    40. 40)
      • 40. De, A., Bogart, C.M., Collins, C.S.: ‘Detecting impersonation on a social network’. US Patent 8225413 B1, July 2012.
    41. 41)
      • 41. Yanushkevich, S., Eastwood, S., Samoil, S., et al: ‘Taxonomy and modelling of impersonation in e-border authentication’. Proc. Int. Conf. Emerging Security Technologies, Braunschweig, Germany, 2015, pp. 3843.
    42. 42)
      • 42. Cantarero, D.C., Herrero, D.A.P., Mendez, F.M.: ‘A multi-modal biometric fusion implementation for abc systems’. Proc. European Intelligence and Security Informatics Conf., Uppsala, Sweden, August 2013, pp. 277280.
    43. 43)
      • 43. Jillela, R., Ross, A.: ‘Mitigating effects of plastic surgery: fusing face and ocular biometrics’. Proc. IEEE Int. Conf. Biometrics: Theory, Applications and Systems, Washington, DC, USA, September 2012, pp. 402411.
    44. 44)
      • 44. Chen, C., Dantcheva, A., Ross, A.: ‘Automatic facial makeup detection with application in face recognition’. Proc. IAPR Int. Conf. Biometrics, Madrid, Spain, June 2013, pp. 18.
    45. 45)
      • 45. Lee, A.J., Jacobson, S.H.: ‘The impact of aviation checkpoint queues on optimizing security screening effectiveness’, Reliab. Eng. Syst. Saf., 2011, 96, (8), pp. 900911.
    46. 46)
      • 46. Nie, X., Batta, R., Drury, .G., et al: ‘Passenger grouping with risk levels in an airport security system’, Eur. J. Operat. Res., 2009, 194, (2), pp. 574584.
    47. 47)
      • 47. Nikolaev, A.G., Lee, A.J., Jacobson, S.H.: ‘Optimal aviation security screening strategies with dynamic passenger risk updates’, IEEE Trans. Intell. Transport. Syst., 2012, 13, (1), pp. 203212.
    48. 48)
      • 48. Sacanamboy, M., Cukic, B.: ‘Combined performance and risk analysis for border management applications’. Proc. IEEE/IFIP Int. Conf. Dependable Systems & Networks, Chicago, USA, June 2010, pp. 403412.
    49. 49)
      • 49. Poursaberi, A., Yanushkevich, S., Gavrilova, M.L., et al: ‘Situational awareness through biometrics’, Computer, 2013, 46, (5), pp. 102104.
    50. 50)
      • 50. DHS S&T and CBP announce the opening of the Maryland test facility’. Available at https://www.dhs.gov/science-and-technology/blog/2014/07/03/dhs-st-and-cbp-announce-opening-maryland-test-facility, accessed 8 October 2016.
    51. 51)
      • 51. ISO/IEC 24713-2:2008: ‘Biometric profiles for interoperability and data interchange, Part 2: physical access control for employees at airports’, 2008.
    52. 52)
      • 52. Nguyen, K., Fookes, C., Sridharan, S., et al: ‘Quality-driven super-resolution for less constrained iris recognition at a distance and on the move’, IEEE Trans. Inf. Forensics Security, 2011, 6, (4), pp. 12481258.
    53. 53)
      • 53. Li, S.Z., Schouten, B., Tistarelli, M.: ‘Biometrics at a distance: issues, challenges, and prospects’, in Tistarelli, M., Li, S.Z., Chellappa, R. (Eds.): ‘Handbook of remote biometrics’ (Springer, 2009), pp. 321.
    54. 54)
      • 54. Labati, D.R., Genovese, A., Piuri, V., et al: ‘Toward unconstrained fingerprint recognition: a fully touchless 3-D system based on two views on the move’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (2), pp. 202219.
    55. 55)
      • 55. Murthy, R., Pavlidis, I.: ‘Noncontact measurement of breathing function’, IEEE Eng. Med. Biol. Mag., 2006, 25, (3), pp. 5767.
    56. 56)
      • 56. Ng, E.Y., Kawb, G., Chang, W.: ‘Analysis of IR thermal imager for mass blind fever screening’, Microvasc. Res., 2004, 68, (2), pp. 104109.
    57. 57)
      • 57. Nunamaker, J.F., Derrick, D.C., Elkins, A.C., et al: ‘Embodied conversational agent-based kiosk for automated interviewing’, J. Manag. Inf. Syst., 2011, 28, (1), pp. 1748.
    58. 58)
      • 58. Proudfoot, J.G.: ‘Evaluating the feasibility of using noncontact sensors to conduct a targetless concealed information test’. Proc. European Intelligence and Security Informatics Conf., Uppsala, Sweden, August 2013, pp. 269272.
    59. 59)
      • 59. Yanushkevich, S.N., Boulanov, O., Stoica, A., et al: ‘Support of interviewing techniques in physical access control systems’. Proc. Int. Workshop on Computational Forensics, Washington, DC, USA, August 2008, pp. 147158.
    60. 60)
      • 60. Labati, D.R., Genovese, A., Muñoz, E., et al: ‘Biometric recognition in automated border control: a survey’, ACM Comput. Surv., 2016, 49, (2), pp. A:1A:39.
    61. 61)
      • 61. IATA.: ‘Checkpoint of the future’ (International Air Transport Association, 2014), pp. 124.
    62. 62)
      • 62. Trochu, S., Touret, O.: ‘Managing the border, smartly’. Proc. European Intelligence and Security Informatics Conf., Uppsala, Sweden, August 2013, pp. 281284.
    63. 63)
      • 63. Eastwood, S., Yanushkevich, S.: ‘Risk profiler in automated human authentication’. Proc. IEEE Symp. Computational Intelligence for Engineering Solutions, Orlando, USA, December 2014, pp. 140147.
    64. 64)
      • 64. Graves, I., Butavicius, M., MacLeod, V., et al: ‘The role of the human operator in image-based airport security technologies’, in Jain, L.C., Aidman, E., Abeynayake, C. (Eds.): ‘Innovations in defence support systems-2’, (Springer, 2011), pp. 147181.
    65. 65)
      • 65. Bolle, R.M., Connell, J., Pankanti, S., et al: ‘Guide to biometrics’ (Springer Science & Business Media, 2013).
    66. 66)
      • 66. US Government Accountability Office: ‘DoD can better conform to standards and share biometric information with federal agencies.’ (GAO-11-276, 2011), pp. 150.
    67. 67)
      • 67. US Government Accountability Office: ‘Defense biometrics: additional training for leaders and more timely transmission of data could enhance the use of biometrics in Afghanistan,’ (GAO-12-442, 2012), pp. 140.
    68. 68)
      • 68. Research and Development Unit: ‘Operational and technical security of electronic passports’ (Frontex, 2011), pp. 1189.
    69. 69)
      • 69. ICAO.: ‘Document 9303, part 1, vol. 2, e-passports’ (International Civil Aviation Organization, 2010).
    70. 70)
      • 70. Hsiao, K.J., Kulesza, A., Hero, A.O.: ‘Social collaborative retrieval’, IEEE J. Sel. Top. Signal Process., 2014, 8, (4), pp. 680689.
    71. 71)
      • 71. Lai, K., Yanushkevich, S., Shmerko, V., et al: ‘Bridging the gap between forensics and biometric-enabled watchlists for e-borders’, IEEE Comput. Intell. Mag., 2017, 12, (1), pp. 1728.
    72. 72)
      • 72. Easley, D., Kleinberg, J.: ‘Networks, crowds, and markets: reasoning about a highly connected world’ (Cambridge University Press, 2010).
    73. 73)
      • 73. Department of the Army: ‘FM 2-22.3 human intelligence collector operations,’2006, pp. 1384.
    74. 74)
      • 74. Tekin, C., van der Schaar, M.: ‘Releaf: an algorithm for learning and exploiting relevance’, IEEE J. Sel. Top. Signal Process., 2015, 9, (4), pp. 716727.
    75. 75)
      • 75. Wittman, M., Davis, P., Flynn, P.J.: ‘Empirical studies of the existence of the biometric menagerie in the FRGC 2.0 color image corpus’. Proc. Conf. Computer Vision and Pattern Recognition Workshop, New York City, USA, June 2006, pp. 3333.
    76. 76)
      • 76. Snelick, R., Uludag, U., Mink, A., et al: ‘Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 450455.
    77. 77)
      • 77. Mezai, L., Hachouf, F.: ‘Score-level fusion of face and voice using particle swarm optimization and belief functions’, IEEE Trans. Hum. Mach. Syst., 2015, 45, (6), pp. 761772.
    78. 78)
      • 78. Bhatt, H.S., Bharadwaj, S., Singh, R., et al: ‘Recognizing surgically altered face images using multiobjective evolutionary algorithm’, IEEE Trans. Inf. Forensics Security, 2013, 8, (1), pp. 89100.
    79. 79)
      • 79. Baker, S.E., Hentz, A., Bowyer, K.W., et al: ‘Degradation of iris recognition performance due to non-cosmetic prescription contact lenses’, Comput. Vis. Image Underst., 2010, 114, (9), pp. 10301044.
    80. 80)
      • 80. Chingovska, I., dos Anjos, A.R.: ‘On the use of client identity information for face antispoofing’, IEEE Trans. Inf. Forensics Security, 2015, 10, (4), pp. 787796.
    81. 81)
      • 81. Maatta, J., Hadid, A., Pietikainen, M.: ‘Face spoofing detection from single images using texture and local shape analysis’, IET Biomet., 2012, 1, (1), pp. 310.
    82. 82)
      • 82. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 947954.
    83. 83)
      • 83. Huang, G.B., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’ (University of Massachusetts, 2007), pp. 111.
    84. 84)
      • 84. Watson, C.I., Wilson, C.I.: ‘NIST special database 4: fingerprint database’ (National Institute of Standards and Technology, 1992), pp. 114.
    85. 85)
      • 85. Watson, C., Fiumara, G., Tabassi, E., et al: ‘Fingerprint vendor technology evaluation, NIST interagency report 8034’ (National Institute of Standards and Technology, 2014), pp. 1233.
    86. 86)
      • 86. Grother, P., Ngan, M.: ‘Face recognition vendor test (FRVT) performance of face identification algorithms, NIST interagency report 8009’ (National Institute of Standards and Technology, 2013), pp. 1138.
    87. 87)
      • 87. Ross, A., Rattani, A., Tistarelli, M.: ‘Exploiting the Doddington zoo effect in biometric fusion’. IEEE Int. Conf. Biometrics: Theory, Applications, and Systems, Washington, DC, September 2009, pp. 17.
    88. 88)
      • 88. Rattani, A.: ‘Adaptive biometric system based on template update procedures’. PhD thesis, University of Cagliari, 2010.
    89. 89)
      • 89. Aven, T.: ‘Foundational issues in risk assessment and risk management’, Risk Anal., 2012, 32, (10), pp. 16471656.
    90. 90)
      • 90. Rausand, M.: ‘Risk assessment: theory, methods, and applications’ (John Wiley & Sons, 2013).
    91. 91)
      • 91. Watchlist operational performance and list size: ‘A first-cut analysis’, in Pato, J.N., Millett, L.I. (Eds.): ‘Biometric recognition: challenges and opportunities’ (National Academies Press, Washington, 2010), pp. 167170.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2017.0036
Loading

Related content

content/journals/10.1049/iet-bmt.2017.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address