Your browser does not support JavaScript!

Bloom filter-based search structures for indexing and retrieving iris-codes

Bloom filter-based search structures for indexing and retrieving iris-codes

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Large-scale biometric deployments are becoming ubiquitous. The computational workload of the conventional retrieval method, requiring 1:N comparisons in the identification mode, is impractical for such systems. In recent years, many approaches for efficient biometric identification were proposed, but their scalability is often questionable. Furthermore, the lack of a unified methodology for biometric workload reduction reporting often makes a direct benchmark or a thorough evaluation of the proposed schemes cumbersome. We present an iris indexing scheme based on Bloom filters and binary search trees. With a statistical model, the system is shown to be theoretically scalable for arbitrarily many enrollees. We evaluate this system on a combined database from several publicly available datasets, containing a total of 11,936 iris images from 1477 instances. In an open-set identification scenario, the system maintains the biometric performance of an iris-code 1:N baseline – a true positive identification rate of approximately 98% measured at 0.1% false positive identification rate, at only 10% of the baseline workload. In a proof-of-concept multi-iris indexing experiment, the true positive identification rate is further increased to over 99%, without additional workload costs. Lastly, we define several prerequisites necessary for a transparent and comprehensive methodology of biometric workload reduction results dissemination.

Related content

This is a required field
Please enter a valid email address