View-invariant gait recognition system using a gait energy image decomposition method

View-invariant gait recognition system using a gait energy image decomposition method

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Gait recognition systems can capture biometrical information from a distance and without the user's active cooperation, making them suitable for surveillance environments. However, there are two challenges for gait recognition that need to be solved, namely when: (i) the walking direction is unknown and/or (ii) the subject's appearance changes significantly due to different clothes being worn or items being carried. This study discusses the problem of gait recognition in unconstrained environments and proposes a new system to tackle recognition when facing the two listed challenges. The system automatically identifies the walking direction using a perceptual hash (PHash) computed over the leg region of the gait energy image (GEI) and then compares it against the PHash values of different walking directions stored in the database. Robustness against appearance changes are obtained by decomposing the GEI into sections and selecting those sections unaltered by appearance changes for comparison against a database containing GEI sections for the identified walking direction. The proposed recognition method then recognises the user using a majority decision voting. The proposed view-invariant gait recognition system is computationally inexpensive and outperforms the state-of-the-art in terms of recognition performance.


    1. 1)
      • 1. Makihara, Y., Matovski, D., Nixon, M., et al: ‘Gait recognition: databases, representations, and applications’ (Wiley Encyclopedia of Electrical and Electronics Engineering, 2015).
    2. 2)
      • 2. Gafurov, D.: ‘A survey of biometric gait recognition: approaches, security and challenges’. Proc. Annual Norwegian Computer Science Conf., 2007.
    3. 3)
      • 3. Ju, M., Bhanu, B.: ‘Individual recognition using gait energy image’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (2), pp. 316322.
    4. 4)
      • 4. Fazenda, J., Santos, D., Correia, P.: ‘Using gait to recognize people’. Proc. Int. Conf. on Computer as a Tool, EUROCON, Belgrade, 2005.
    5. 5)
      • 5. Tardi, T., Sruti, C.D.: ‘Silhouette-based gait recognition using procrustes shape analysis and elliptic fourier descriptors’, Pattern Recognit., 2012, 45, (9), pp. 34143426.
    6. 6)
      • 6. Poo, L., Tan, A., Tan, S.: ‘Gait probability image: an information-theoretic model of gait representation’, J. Vis. Commun. Image Represent., 2014, 25, (6), pp. 14891492.
    7. 7)
      • 7. Iwashita, Y., Kurazume, R., Baba, R., et al: ‘Method for gait-based biometric identification robust to changes in observation angle’. Proc. 26th Int. Conf. of Image and Vision Computing, Auckland, New Zealand, 2011.
    8. 8)
      • 8. Muramatsu, D., Shiraishi, A., Makihara, Y., et al: ‘Arbitrary view transformation model for gait person authentication’. Proc. 5th Int. Conf. on Theory, Applications and Systems (BTAS), 2012.
    9. 9)
      • 9. Zhao, G., Liu, G., Li, H., et al: ‘3D gait recognition using multiple cameras’. Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, Southampton, 2006.
    10. 10)
      • 10. Kale, A., Chowdhury, A., Chellappa, R.: ‘Towards a view invariant gait recognition algorithm’. Proc. Int. Conf. on Advanced Video and Signal Based Surveillance, 2005.
    11. 11)
      • 11. Bouchrika, I., Carter, J., Nixon, M.: ‘Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras’, Multimedia Tools Appl., 2016, 75, (2), pp. 12011221.
    12. 12)
      • 12. Goffredo, M., Bouchrika, I., Carter, J., et al: ‘Self-calibrating view-invariant gait biometrics’, IEEE Trans. Syst. Man Cybern., 2010, 40, (4), pp. 9971008.
    13. 13)
      • 13. Jeana, F., Albub, A., Bergevina, R.: ‘Towards view-invariant gait modeling: computing view-normalized body’, Pattern Recognit., 2009, 42, (11), pp. 29362949.
    14. 14)
      • 14. Kusakunniran, W., Wu, Q., Li, H., et al: ‘Multiple views gait recognition using view transformation model based on optimized gait energy image’. Proc. IEEE 12th Int. Conf. on Computer Vision Workshops (ICCV Workshops), Kyoto, 2009.
    15. 15)
      • 15. Chaubey, H., Hanmandlu, M., Vasikarla, S.: ‘Enhanced view invariant gait recognition using feature level fusion’. Proc. Applied Imagery Pattern Recognition Workshop (AIPR), Washington DC, 2014.
    16. 16)
      • 16. Shiraga, K., Makihara, Y., Muramatsu, D., et al: ‘GEINet: view-invariant gait recognition using a convolutional neural network’. Proc. IEEE Int. Conf. on Biometrics (ICB), 2016.
    17. 17)
      • 17. Liu, N., Tan, Y.: ‘View invariant gait recognition’. Proc. IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP), Dallas, TX, 2010.
    18. 18)
      • 18. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘A new view-invariant feature for cross-view gait recognition’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (10), pp. 16421653.
    19. 19)
      • 19. Choudhury, D.S., Tardi, T.: ‘Robust view invariant multiscale gait recognition’, Pattern Recognit., 2015, 48, (3), pp. 798811.
    20. 20)
      • 20. Guan, Y., Li, C., Hu, Y.: ‘An adaptive system for gait recognition in multi-view environments’. Proc. 14th ACM Multimedia and Security Workshop, Coventry, UK, 2012.
    21. 21)
      • 21. Khalid, B., Tao, X., Shaogang, G.: ‘Cross view gait recognition using correlation strength’. Proc. British Machine Vision Conf., London, 2010.
    22. 22)
      • 22. Verlekar, T., Correia, P., Soares, L.: ‘View-invariant gait recognition exploiting spatio-temporal information and a dissimilarity metric’. Proc. Int. Conf. of IEEE in Biometrics Special Interest Group (BIOSIG), 2016.
    23. 23)
      • 23. Pratheepan, Y., Condell, J., Prasad, G.: ‘P Rw GEI: poisson random walk based gait recognition’. Proc. IEEE 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA), 2011.
    24. 24)
      • 24. Bashir, K., Tao, X., Shaogang, G.: ‘Gait recognition using gait entropy image’. Proc. 3rd Int. Conf. on Crime Detection and Prevention (ICDP), 2009.
    25. 25)
      • 25. Jeevan, M., Jain, N., Hanmandlu, M., et al: ‘Gait recognition based on Gait Pal and Pal Entropy Image’. Proc. 20th IEEE Int. Conf. on Image Processing (ICIP), 2013.
    26. 26)
      • 26. Bashir, K., Tao, X., Shaogang, G.: ‘Gait recognition without subject cooperation’, Pattern Recognit. Lett., 2010, 31, (13), pp. 20522060.
    27. 27)
      • 27. Iwashita, Y., Uchino, K., Kurazume, R.: ‘Gait-based person identification robust to changes in appearance’, Sens. - Open Access J., 2013, 13, (6), pp. 78847901.
    28. 28)
      • 28. Liang, Y., Li, C., Guan, Y., et al: ‘Gait recognition based on the golden ratio’, EURASIP J. Image Video Process., 2016, (1), p. 22.
    29. 29)
      • 29. Verlekar, T., Correia, P.: ‘Walking Direction Identification using Perceptual Hashing’. Proc. Int. Workshop on Biometrics and Forensics – IWBF, Limassol, Cyprus, 2016.
    30. 30)
      • 30. ‘CASIA Gait Database’,
    31. 31)
      • 31. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.

Related content

This is a required field
Please enter a valid email address