http://iet.metastore.ingenta.com
1887

access icon openaccess PRNU enhancement effects on biometric source sensor attribution

Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/6/4/IET-BMT.2016.0117.html;jsessionid=1m7vsbtbgjfl7.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2016.0117&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Fridrich, J.: ‘Sensor defects in digital image forensics’, in Sencar, H.T., Memon, N. (Eds.): ‘Digital image forensics: there is more to a picture than meets the eye’ (Springer Verlag, 2012), ch. 6, pp. 179218.
    2. 2)
      • 2. Bartlow, N., Kalka, N., Cukic, B., et al: ‘Identifying sensors from fingerprint images’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, 2009, CVPR Workshops 2009, June 2009, pp. 7884.
    3. 3)
      • 3. Uhl, A., Höller, Y.: ‘Iris-sensor authentication using camera PRNU fingerprints’. Proc. of the 5th IAPR/IEEE Int. Conf. on Biometrics (ICB'12), New Delhi, India, March 2012, pp. 18.
    4. 4)
      • 4. Kalka, N., Bartlow, N., Cukic, B., et al: ‘A preliminary study on identifying sensors from iris images’. The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2015.
    5. 5)
      • 5. Gloe, T., Pfennig, S., Kirchner, M.: ‘Unexpected artefacts in prnu-based camera identification: a ‘Dresden image database’ case-study’. MM&Sec'12: Proc. of the 14th ACM Multimedia and Security Workshop, September 2012, pp. 109114.
    6. 6)
      • 6. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-d transform domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    7. 7)
      • 7. Li, Ch.-T.: ‘Source camera identification using enhanced sensor pattern noise’, IEEE Trans. Inf. Forensics Sec., 2010, 5, (2), pp. 280287.
    8. 8)
      • 8. Cooper, A.J.: ‘Improved photo response non-uniformity (prnu) based source camera identification’, Forensic Sci. Int., 2013, 226, (13), pp. 132141.
    9. 9)
      • 9. Gisolf, F., Malgoezar, A., Baar, T., et al: ‘Improving source camera identification using a simplified total variation based noise removal algorithm’, Digital Invest., 2013, 10, (3), pp. 207214.
    10. 10)
      • 10. Kang, X., Chen, J., Lin, K., et al: ‘A context-adaptive spn predictor for trustworthy source camera identification’, EURASIP J. Image Video Process., 2014, 2014, (1), p. 19.
    11. 11)
      • 11. Lin, X., Li, Ch.-T.: ‘Preprocessing reference sensor pattern noise via spectrum equalization’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (1), pp. 126140.
    12. 12)
      • 12. Lin, X., Li, Ch.-T.: ‘Enhancing sensor pattern noise via filtering distortion removal’, IEEE Signal Process. Lett., 2016, 23, (3), pp. 381385.
    13. 13)
      • 13. Amerini, I., Caldelli, R., Crescenzi, P., et al: ‘Blind image clustering based on the normalized cuts criterion for camera identification’, Signal Process. Image Commun., 2014, 29, (8), pp. 831843.
    14. 14)
      • 14. Li, Ch.-T.: ‘Unsupervised classification of digital images using enhanced sensor pattern noise’. ISCAS, 2010, pp. 34293432.
    15. 15)
      • 15. Caldelli, R., Amerini, I., Picchioni, F., et al: ‘Fast image clustering of unknown source images’. IEEE Int. Workshop on Information Forensics and Security (WIFS) 2010, 2010, pp. 15.
    16. 16)
      • 16. Bloy, G.: ‘Blind camera fingerprinting and image clustering’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (3), pp. 532534.
    17. 17)
      • 17. Debiasi, L., Uhl, A.: ‘Techniques for a forensic analysis of the casia-iris v4 database’. Proc. of the 3rd Int. Workshop on Biometrics and Forensics (IWBF'15), 2015.
    18. 18)
      • 18. Liu, B.b., Lee, H.K., Hu, Y., et al: ‘On classification of source cameras: a graph based approach’. 2010 IEEE Int. Workshop on Information Forensics and Security (WIFS), December 2010, pp. 15.
    19. 19)
      • 19. Alles, E.J., Geradts, Z.J.M.H., Veenman, C.J.: ‘Source camera identification for low resolution heavily compressed images’. Proc. of the 2008 Int. Conf. on Computational Science and its Applications, ICCSA ‘08), Special Session on Computational Forensics, COMPFOR ‘08, Perugia, Italy, June 2008.
    20. 20)
      • 20. Amerini, I., Becarelli, R., Bertini, B., et al: ‘Acquisition source identification through a blind image classification’, IET Image Process., 2015, 9, (4), pp. 329337.
    21. 21)
      • 21. Debiasi, L., Uhl, A.: ‘Comparison of prnu enhancement techniques to generate prnu fingerprints for biometric source sensor attribution’. Proc. of the 4th Int. Workshop on Biometrics and Forensics (IWBF'16), Limassol, Cyprus, 2016, pp. 16.
    22. 22)
      • 22. Fridrich, J.: ‘Digital image forensic using sensor noise’, IEEE Signal Process. Mag., 2009, 26, (2), pp. 2637.
    23. 23)
      • 23. Lukas, J., Fridrich, J., Goljan, M.: ‘Digital camera identification from sensor pattern noise’, IEEE Trans. Inf. Forensics Sec., 2006, 1, (2), pp. 205214.
    24. 24)
      • 24. Mihcak, M., Kozintsev, I., Ramchandran, K.: ‘Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising’. Proc. of the 1999 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP ‘99, Phoenix, AZ, USA, March 2009, pp. 32533256.
    25. 25)
      • 25. Kang, X., Li, Y., Qu, Z., et al: ‘Enhancing source camera identification performance with a camera reference phase sensor pattern noise’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 393402.
    26. 26)
      • 26. Debiasi, L., Uhl, A.: ‘Blind biometric source sensor recognition using advanced prnu fingerprints’. Proc. of the 2015 European Signal Processing Conf. (EUSIPCO 2015), 2015.
    27. 27)
      • 27. Lloyd, S.P.: ‘Least square optimization in PCM’, IEEE Trans. Inf. Theory, 1982, 2, (IT-28), pp. 129137.
    28. 28)
      • 28. Gloe, T., Bhme, R.: ‘The dresden image database for benchmarking digital image forensics’. SAC 2010: Proc. of the 2010 ACM Symp. on Applied Computing, 2010, pp. 15841590.
    29. 29)
      • 29. Debiasi, L., Sun, Z., Uhl, A.: ‘Generation of iris sensor PRNU fingerprints from uncorrelated data’. Proc. of the 2nd Int. Workshop on Biometrics and Forensics (IWBF'14), 2014.
    30. 30)
      • 30. Rousseeuw, P.: ‘Silhouettes: A graphical aid to the interpretation and validation of cluster analysis’, J. Comput. Appl. Math., 1987, 20, (1), pp. 5365.
    31. 31)
      • 31. Rosenberg, A., Hirschberg, J.: ‘V-measure: A conditional entropy-based external cluster evaluation measure’. Proc. of the 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLPCoNLL), 2007, pp. 410420.
    32. 32)
      • 32. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: ‘On the surprising behavior of distance metrics in high dimensional space’, in Van den Bussche, J., Vianu, V. (Eds.): ‘Lecture Notes in Computer Science’ (Springer, 2001), pp. 420434.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0117
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address