Signature authentication based on human intervention: performance and complementarity with automatic systems

Signature authentication based on human intervention: performance and complementarity with automatic systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work explores human intervention to improve Automatic Signature Verification (ASV). Significant efforts have been made in order to improve the performance of ASV algorithms over the last decades. This work analyzes how human actions can be used to complement automatic systems. Which actions to take and to what extent those actions can help state-of-the-art ASV systems is the final aim of this research line. The analysis at classification level comprises experiments with responses from 500 people based on crowdsourcing signature authentication tasks. The results allow to establish a human baseline performance and comparison with automatic systems. Intervention at feature extraction level is evaluated using a self-developed tool for the manual annotation of signature attributes inspired in Forensic Document Experts analysis. We analyze the performance of attribute-based human signature authentication and its complementarity with automatic systems. The experiments are carried out over a public database including the two most popular signature authentication scenarios based on both online (dynamic time sequences including position and pressure) and offline (static images) information. The results demonstrate the potential of human interventions at feature extraction level (by manually annotating signature attributes) and encourage to further research in its capabilities to improve the performance of ASV.


    1. 1)
      • 1. Plamondon, R., Srihari, S.N.: ‘On-line and off-line handwriting recognition: a comprehensive survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, pp. 6384.
    2. 2)
      • 2. Impedovo, D., Pirlo, G.: ‘Automatic signature verification: the state of the art’, IEEE Trans. Syst. Man Cybern. C, 2008, 38, (5), pp. 609635.
    3. 3)
      • 3. Fierrez, J., Ortega-Garcia, J.: ‘On-line signature verification’, in Jain, A.K., Ross, A., Flynn, P. (EDs.): ‘Handbook of biometrics’, (Springer, New York, NY 10013, USA, 2008), pp. 189209.
    4. 4)
      • 4. Kumar, N., Berg, A.C., Belhumeur, P.N., et al: ‘Describable visual attributes for face verification and image search’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (10), pp. 19621977.
    5. 5)
      • 5. Reid, D., Nixon, M., Stevenage, S.V.: ‘Soft biometrics; human identification using comparative descriptions’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (6), pp. 12161228.
    6. 6)
      • 6. Klare, B.F., Klum, S., Klontz, J., et al: ‘Suspect identification based on descriptive facial attributes’. Proc. of Int. Joint Conf. on Biometrics, Clearwater, FL, USA, 2014, pp. 18.
    7. 7)
      • 7. Samangouei, P., Patel, V.M., Chellappa, R.: ‘Continuous user authentication on mobile devices based on facial attributes’, IEEE Signal Process. Mag., 2016, 33, (4), pp. 4961.
    8. 8)
      • 8. Tome, P., Fierrez, J., Vera-Rodriguez, R., et al: ‘Soft biometrics and their application in person recognition at a distance’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (3), pp. 464475.
    9. 9)
      • 9. Best-Rowden, L., Bisht, S., Klontz, J.C., et al: ‘Unconstrained face recognition: establishing baseline human performance via crowdsourcing’. Proc. of the Int. Joint Conf. on Biometrics, Tampa, USA, 2014, pp. 16.
    10. 10)
      • 10. Han, H., Otto, C., Liu, X., et al: ‘Demographic estimation from face images: human vs. machine performance’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (6), pp. 11481161.
    11. 11)
      • 11. Coetzer, J., Herbst, B.M., Du Preez, J.A.: ‘Off-line signature verification: a comparison between human and machine performance’. Proc. Tenth Int. Workshop on Frontiers in Handwriting Recognition, La Baule, France, 2006, pp. 481485.
    12. 12)
      • 12. Phillips, P.J., Hill, M.Q., Swindle, J.A., et al: ‘Human and algorithm performance on the PaSC face recognition challenge’. Proc. Int. Conf. on Biometrics: Theory, Applications and Systems, Arlington, USA, 2015, pp. 18.
    13. 13)
      • 13. Morocho, D., Morales, A., Fierrez, J., et al: ‘Towards human-assisted signature recognition: improving biometric systems through attribute-based recognition’. Proc. IEEE Int. Conf. on Identity, Security and Behavior Analysis, Japan, 2016, pp. 16.
    14. 14)
      • 14. Jain, A.K., Dass, S.C., Nandakumar, K., et al: ‘Soft biometric traits for personal recognition systems’. Proc. Int. Conf. Biometric Authentication, Hong Kong, 2004, pp. 731738.
    15. 15)
      • 15. Dantcheva, A., Velardo, C., D'angelo, A., et al: ‘Bag of soft biometrics for person identification: new trends and challenges’, Mutimedia Tools Appl., 2010, 10, pp. 136.
    16. 16)
      • 16. Oliveira, L., Justino, E., Freitas, C., et al: ‘The graphology applied to signature verification’. Proc. 12th Conf. of the Int. Graphonomics Society, Salerno, Italy, 2005, pp. 286290.
    17. 17)
      • 17. Burkes, T.M., Seiger, D.P., Harrison, D.: ‘Handwriting examination: meeting the challenges of science and the law’, Forensic Sci. Commun., 2009, 11, (4).
    18. 18)
      • 18. Malik, M.I., Liwicki, M., Dengel, A., et al: ‘Man vs. machine: a comparative analysis for forensic signature verification’. Proc. of the 16th Int. Graphonomics Society Conf., 2013, pp. 913.
    19. 19)
      • 19. Malik, M.I., Liwicki, M., Dengel, A.: ‘Part-based automatic system in comparison to human experts for forensic signature verification’. Proc. Int. Conf. on Document Analysis and Recognition, Washington, DC, USA, 2013, pp. 872876.
    20. 20)
      • 20. Coetzer, H., Sabourin, R.: ‘A human-centric off-line signature verification system’. Proc. Int. Conf. on Document Analysis and Recognition, Curitiba, Brazil, 2007, pp. 153157.
    21. 21)
      • 21. Morocho, D., Morales, A., Fierrez, J., et al: ‘Signature recognition: establishing human performance via crowdsourcing’. Proc. Fourth Int. Workshop on Biometrics and Forensics, Limassol, Cyprus, 2016, pp. 16.
    22. 22)
      • 22. Coetzer, J., Swanepoel, J., Sabourin, R.: ‘Efficient cost-sensitive human-machine collaboration for offline signature verification’, IS&T/SPIE Electron. Imaging, 2012, 8297, pp. 18.
    23. 23)
      • 23. Fierrez, J., Galbally, J., Ortega-Garcia, J., et al: ‘BiosecurID: a multimodal biometric database’, Pattern Anal. Appl., 2010, 13, (2), pp. 235246.
    24. 24)
      • 24. Martinez-Diaz, M., Fierrez, J., Krish, R.P., et al: ‘Mobile signature verification: feature robustness and performance comparison’, IET Biometrics, 2014, 3, pp. 267277.
    25. 25)
      • 25. Galbally, J., Diaz-Cabrera, M., Ferrer, M.A., et al: ‘On-line signature recognition through the combination of real dynamic data and synthetically generated static data’, Pattern Recognit., 2015, 48, pp. 29212934.
    26. 26)
      • 26. Martinez-Diaz, M., Fierrez, J.: ‘Signature databases and evaluation’, in Li, S.Z., Jain, A.K. (EDs.): ‘Encyclopedia of biometrics’ (Springer, New York, NY 10013, USA, 2015), pp. 13671375.
    27. 27)
      • 27. Malik, M.I., Liwicki, M., Alewijnse, L., et al: ‘ICDAR2013 competitions on signature verification and writer identification for on- and offline skilled forgeries (SigWiComp2013)’. Proc. of Int. Conf. on Document Analysis and Recognition, Tunisia, 2013, pp. 11081114.
    28. 28)
      • 28. Houmani, N., Mayoue, A., Garcia-Salicetti, S., et al: ‘Biosecure signature evaluation campaign (BSEC2009): evaluating online signature algorithms depending on the quality of signatures’, Pattern Recognit., 2012, 45, pp. 9931003.
    29. 29)
      • 29. Ferrer, M., Vargas, J., Morales, A., et al: ‘Robustness of offline signature verification based on gray level features’, IEEE Trans. Inf., Forensics Sec., 2012, 7, (3), pp. 966977.
    30. 30)
      • 30. Jain, A.K., Nandakumar, K., Ross, A.: ‘Score normalization in multimodal biometric systems’, Pattern Recognit., 2005, 38, (12), pp. 22702285.

Related content

This is a required field
Please enter a valid email address