http://iet.metastore.ingenta.com
1887

Sclera recognition: on the quality measure and segmentation of degraded images captured under relaxed imaging conditions

Sclera recognition: on the quality measure and segmentation of degraded images captured under relaxed imaging conditions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors propose a new method for sclera quality measure and segmentation under relaxed imaging constraints. In particular, for sclera image, they propose a new quality measure approach based on a focus measure. In addition, they propose a new fusion method for sclera segmentation which uses pixel properties of both the sclera area and the skin around the eye. Furthermore, sclera template rotation alignment and distance scaling methods are proposed to minimise the error rates when noisy eye images are captured at-a-distance and on-the-move, together with overcoming head pose rotation. Then, a performance analysis on exploited eye images using the Excellent, the Good, the Bad, and the Ugly (EGBU) classification technique for image quality is used to evaluate system performance. Eye images captured under relaxed imaging constraints using four camera devices within the UBIRIS.v2 and MICHE mobile databases are utilised to evaluate the proposed sclera recognition system, with the UBIRIS.v1 database as a reference. Results in terms of sclera image quality measure and sclera segmentation are promising and describe the effect and challenges of using relaxed imaging conditions on sclera recognition system.

References

    1. 1)
      • 1. Proenca, H.: ‘Iris recognition: on the segmentation of degraded images acquired in the visible wavelength’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (8), pp. 15021516.
    2. 2)
      • 2. Smereka, J.M., Boddeti, V.N., Vijaya Kumar, B.V.K.: ‘Probabilistic deformation models for challenging periocular image verification’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (9), pp. 18751890.
    3. 3)
      • 3. Alkassar, S., Woo, W.L., Dlay, S.S., et al: ‘Robust sclera recognition system with novel sclera segmentation and validation techniques’, IEEE Trans. Syst. Man Cybern. Syst., 2016, (99), pp. 113.
    4. 4)
      • 4. Derakhshani, R., Ross, A.: ‘A new biometric modality based on conjunctival vasculature’. Proc. of Artificial Neural Networks in Engineering (ANNIE), 2006, pp. 18.
    5. 5)
      • 5. Zhou, Z., Du, E.Y., Thomas, N.L., et al: ‘A new human identification method: sclera recognition’, IEEE Trans. Syst. Man Cybern. A, 2012, 42, (3), pp. 571583.
    6. 6)
      • 6. Derakhshani, R., Ross, A.: ‘A texture-based neural network classifier for biometric identification using ocular surface vasculature’. Int. Joint Conf. on Neural Networks (IJCNN), 2007, pp. 29822987.
    7. 7)
      • 7. Crihalmeanu, S., Ross, A., Derakhshani, R.: ‘Enhancement and registration schemes for matching conjunctival vasculature’. Proc. of the Third IAPR/IEEE Int. Conf. on Biometrics (ICB), 2009, pp. 12401249.
    8. 8)
      • 8. Thomas, N.L., Du, E.Y., Zhou, Z.: ‘A new approach for sclera vein recognition’. SPIE Defense, Security, and Sensing, 2010.
    9. 9)
      • 9. Oh, K., Toh, K.A.: ‘Extracting sclera features for cancelable identity verification’. Fifth IAPR Int. Conf. on Biometrics (ICB), 2012, pp. 245250.
    10. 10)
      • 10. Das, A., Pal, U., Ballester, M.A.F., et al: ‘A new efficient and adaptive sclera recognition system’. IEEE Symp. on Computational Intelligence in Biometrics and Identity Management (CIBIM), 2014, pp. 18.
    11. 11)
      • 11. Gottemukkula, V., Saripalle, S., Tankasala, S.P., et al: ‘Method for using visible ocular vasculature for mobile biometrics’, IET Biometrics, 2016, 5, (1), pp. 312.
    12. 12)
      • 12. Das, A., Pal, U., Ferrerc, M.A., et al: ‘SSBC 2015: sclera segmentation benchmarking competition’. Seventh Int. Conf. on Biometrics Theory, Applications and Systems (BTAS), 2015, pp. 16.
    13. 13)
      • 13. Das, A., Pal, U., Ferrerc, M.A., et al: ‘SSRBC 2016: sclera segmentation and recognition benchmarking competition’. Ninth IAPR Int. Conf. on Biometrics (ICB), 2016, pp. 16.
    14. 14)
      • 14. Zhou, Z., Du, E.Y., Thomas, N.L.: ‘A comprehensive sclera image quality measure’. Eleventh Int. Conf. on Control Automation Robotics & Vision (ICARCV), 2010, pp. 638643.
    15. 15)
      • 15. Lin, Y., Du, E.Y., Zhou, Z., et al: ‘An Efficient Parallel Approach for Sclera Vein Recognition’. IEEE Trans. Inf. Forensics Security, 2014, 9, (2), pp. 147157.
    16. 16)
      • 16. Hosseini, M.S., Araabi, B.N., Soltanian-Zadeh, H., et al: ‘Pigment Melanin: Pattern for Iris Recognition’. IEEE Trans. Instrum. Meas., 2010, 59, (4), pp. 792804.
    17. 17)
      • 17. Alkassar, S., Woo, W.L., Dlay, S.S., et al: ‘A novel method for sclera recognition with images captured on-the-move and at-a-distance’. Fourth Int. Conf. on Biometrics and Forensics (IWBF), 2016, pp. 16.
    18. 18)
      • 18. Proenca, H., Alexandre, L.A.: ‘UBIRIS: a noisy iris image database’. Int. Conf. on Image Anal. and Processing (ICIAP), 2005, pp. 970977.
    19. 19)
      • 19. Proenca, H., Filipe, S., Santos, R., et al: ‘The UBIRIS.v2: a database of visible wavelength images captured on-the-move and at-a-distance’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (8), pp. 15291535.
    20. 20)
      • 20. De Marsico, M., Nappi, M., Riccio, D., et al: ‘Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols’, Pattern Recognit. Lett., 2015, 57, pp. 1723.
    21. 21)
      • 21. Phillips, P.J., Beveridge, J.R., Draper, B.A., et al: ‘An introduction to the good, the bad, & the ugly face recognition challenge problem’. IEEE Int. Conf. on Automatic Face & Gesture Recognition and Workshops, 2011, pp. 346353.
    22. 22)
      • 22. Pech-Pacheco, J.L., Cristóbal, G., Chamorro-Martinez, J., et al: ‘Diatom autofocusing in brightfield microscopy: a comparative study’. 15th Int. Conf. on Pattern Recognition, 2000, pp. 314317.
    23. 23)
      • 23. Daugman, J.: ‘How iris recognition works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    24. 24)
      • 24. Alkassar, S., Woo, W.L., Dlay, S.S., et al: ‘Enhanced segmentation and complex-sclera features for human recognition with unconstrained visible-wavelength imaging’. Nineth IAPR Int. Conf. on Biometrics (ICB), 2016, pp. 18.
    25. 25)
      • 25. Alkassar, S., Woo, W.L., Dlay, S.S., et al: ‘Efficient eye corner and gaze detection for sclera recognition under relaxed imaging constraints’. 24th European Signal Processing Conf. (EUSIPCO), 2016, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0114
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address