access icon free Illumination pre-processing method for face recognition using 2D DWT and CLAHE

This study presents an illumination pre-processing method termed as ‘Discrete wavelet transform enhanced contrast limited adaptive histogram equalisation’ (DWT E-CLAHE) to recognise the front view facial images in the difficult light conditions. A recent image enhancement method CLAHE-DWT motivates to combine the two-dimensional discrete wavelet transform (2D DWT) and CLAHE. The DWT E-CLAHE is implemented as follows: The original image is enhanced using the Gamma intensity correction (GIC); then split into low-frequency and high-frequency components using 2D DWT; finally, to the low-frequency components, the logarithmic transform, GIC and CLAHE are applied in the sequential order. The face recognition of DWT E-CLAHE is made using Gabor magnitude features. The face recognition of CLAHE-DWT is implemented for the first time. The experimental results of DWT E-CLAHE in the various face databases prove the following: (i) The proper selection of parameters of DWT E-CLAHE improves the brightness and contrast of the image. (ii) The recognition accuracy of DWT E-CLAHE in the Carnegie Mellon University (CMU) Pose, Illumination, and Expression (PIE) and Extended Yale B databases are extremely good, since the brightness and contrast are improved significantly. (iii) The performance comparison of DWT E-CLAHE outperforms CLAHE-DWT and state-of-the-art face recognition methods. (iv) DWT E-CLAHE recognises the varying facial expressions.

Inspec keywords: image enhancement; face recognition; brightness; Gabor filters; discrete wavelet transforms; visual databases; emotion recognition

Other keywords: Gabor magnitude features; face recognition; Gamma intensity correction; light conditions; extended Yale B; GIC; front view facial images; contrast; discrete wavelet transform enhanced contrast limited adaptive histogram equalisation; two-dimensional discrete wavelet transform; 2D DWT; brightness; low-frequency components; CMU PIE; high-frequency components; illumination preprocessing method; image enhancement method CLAHE-DWT; facial expression recognition; logarithmic transform; face databases

Subjects: Spatial and pictorial databases; Integral transforms; Image recognition; Computer vision and image processing techniques; Filtering methods in signal processing; Integral transforms

References

    1. 1)
      • 18. Shih, F.Y., Chuang, C.-F., Wang, P.S.P.: ‘Performance comparisons of facial expression recognition in JAFFE database’, Int. J. Pattern Recogn. Artif. Intell., 2008, 22, (3), pp. 445459.
    2. 2)
      • 7. Struc, V., Pavesic, N.: ‘The complete Gabor-Fisher classifier for robust face recognition’, EURASIP Adv. Signal Process., 2010, 1155, pp. 126.
    3. 3)
      • 11. Kafai, M., An, L., Bhanu, B.: ‘Reference face graph for face recognition’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (12), pp. 21322143.
    4. 4)
      • 26. ‘Essex Face 94 database’: http://cswww.essex.ac.uk/mv/allfaces/faces94.html, accessed December 2016.
    5. 5)
      • 19. Gumus, E., Kilic, N., Sertbas, A., et al: ‘Evaluation of face recognition techniques using PCA, wavelets and SVM’, Expert Syst. Appl., 2010, 37, pp. 64046408.
    6. 6)
      • 12. Faraji, M.R., Qi, X.: ‘Face recognition under illumination variations based on eight local directional patterns’, IET Biomet., 2015, 4, (1), pp. 1017.
    7. 7)
      • 6. Liu, C., Wechsler, H.: ‘Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition’, IEEE Trans. Image Process., 2002, 11, (4), pp. 467476.
    8. 8)
      • 29. Sidorov, G., Gelbukh, A., Gomez-Adorno, H., et al: ‘Soft similarity and soft cosine measure: similarity of features in vector space model’, Comput. Syst., 2014, 18, (3), pp. 491504.
    9. 9)
      • 20. Sellahewa, H., Jassim, S.A.: ‘Image-quality-based adaptive face recognition’, IEEE Trans. Instrum. Meas., 2010, 59, (4), pp. 805813.
    10. 10)
      • 2. Brunelli, R., Poggio, T.: ‘Face recognition features versus templates’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (10), pp. 10421052.
    11. 11)
      • 13. Nikan, S., Ahmadi, M.: ‘Local gradient-based illumination invariant face recognition using local phase quantisation and multi-resolution local binary pattern fusion’, IET Image Process., 2015, 9, (1), pp. 1221.
    12. 12)
      • 15. Dai, D.-Q., Yan, H.: ‘Wavelets and face recognition’, in Delac, K., Grgic, M. (Eds.): ‘Face recognition’ (I-Tech, Vienna, Austria, 2007), p. 558.
    13. 13)
      • 1. Zhao, W., Chellappa, R., Rosenfeld, A., et al: ‘Face recognition: a literature survey’, ACM Comput. Surv., 2003, 35, (4), pp. 399458.
    14. 14)
      • 30. Abaza, A., Harrison, M.A., Bourlar, T., et al: ‘Design and evaluation of photometric image quality measures for effective face recognition’, IET Biomet., 2014, 22, (1), pp. 111.
    15. 15)
      • 9. Meng Yang, M., Zhang, L., Shiu, S.C.-K., et al: ‘Robust kernel representation with statistical local features for face recognition’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (6), pp. 900912.
    16. 16)
      • 16. Ekenel, H.K., Sankur, B.: ‘Multiresolution face recognition’, Image Vis. Comput., 2005, 23, pp. 469477.
    17. 17)
      • 23. Lidong, H., Wei, Z., Jun, W., et al: ‘Combination of contrast limited adaptive histogram equalization and discrete wavelet transform for image enhancement’, IET Image Process., 2015, 9, (10), pp. 908915.
    18. 18)
      • 8. Lee, P.-H., Wu, S.-W., Hung, Y.-P.: ‘Illumination compensation using oriented local histogram equalization and its application to face recognition’, IEEE Trans. Image Process., 2012, 21, (9), pp. 42804289.
    19. 19)
      • 3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    20. 20)
      • 5. Liu, C.: ‘Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 725737.
    21. 21)
      • 28. Lee, K.C., Ho, J., Kriegman, D.: ‘Acquiring linear subspaces for face recognition under variable lighting’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 684698.
    22. 22)
      • 25. Lyons, M.J., Akamatsu, S., Kamachi, M., et al: ‘Coding facial expressions with Gabor wavelets’. Proc. Third IEEE Int. Conf. Automatic Face and Gesture Recognition, IEEE Computer Society, Nara Japan, April 1998, pp. 200205.
    23. 23)
      • 24. Martinez, A.M., Benavente, R.: ‘The AR face database’. CVC Technical Report 24, Computer Vision Centre, 1998.
    24. 24)
      • 10. Chen, W., Gao, Y.: ‘Face recognition using ensemble string matching’, IEEE Trans. Image Process., 2013, 22, (12), pp. 47984808.
    25. 25)
      • 17. Kanan, H.R., Faez, K.: ‘An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system’, Appl. Math. Comput., 2008, 205, pp. 716725.
    26. 26)
      • 22. Ajit Krisshna, N.L., Kadetotad Deepak, V., Manikantan, K., et al: ‘Face recognition using transform domain feature extraction and PSO-based feature selection’, Appl. Soft Comput., 2014, 2, pp. 141161.
    27. 27)
      • 21. Cao, X., Shen, W., Yu, L.G., et al: ‘Illumination invariant extraction for face recognition using neighboring wavelet coefficients’, Pattern Recognit., 2012, 45, pp. 12991305.
    28. 28)
      • 27. Sim, T., Baker, S., Bsat, M.: ‘The CMU pose, illumination, and expression database’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (12), pp. 16151618.
    29. 29)
      • 4. Rafael, C.G., Richard, E.W.: ‘Digital image processing’ (Pearson Prentice Hall, Upper Saddle River, New Jersey, 2008, 3rd edn.).
    30. 30)
      • 14. Roy, H., Bhattacharjee, D.: ‘Local-gravity-face (LG-face) for illumination-invariant and heterogeneous face recognition’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (7), pp. 14121424.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0092
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading