Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Survey on the impact of fingerprint image enhancement

The performance of fingerprint comparison algorithms depends on the reliability and accuracy of the features extracted from the fingerprints. The accuracy of the feature extraction algorithms is assumed to depend on the quality of the fingerprint images. Especially, low-quality images can be challenging for feature extraction algorithms. Image enhancement may allow to extract features more accurately. There is a lack of extensive and quantitative evaluation of image enhancement methods. This study investigates the impact of seven typical image enhancement methods on biometric sample quality and on biometric performance. The interrelation of image quality and biometric performance is investigated on 14 datasets. Biometric quality measures are estimated based on image quality metrics NFIQ1 and NFIQ2.0. Biometric performance is tested using MINDTCT and FingerJetFX for feature extraction and BOZORTH3 for biometric comparison. This work shows that the biometric performance can be improved by image enhancement. The significance of improvements depends on both the quality of the datasets and the feature extraction. Thus, there is no single best improvement algorithm. A correlation of changes in scores and image qualities can only be found on the level of entire datasets. No significant correlation can be found for single biometric comparisons.

References

    1. 1)
      • 40. Fahmy, M., Thabet, M.: ‘A novel scheme for fingerprint enhancement’. 31st National Radio Science Conf. (NRSC), 2014, 2014, pp. 142149.
    2. 2)
      • 50. Chauhan, P.: ‘Steps in fingerprint enhancement techniques’, Int. J., 2014, 4, (7), pp. 938942.
    3. 3)
      • 65. Liu, M., Chen, X., Wang, X.: ‘Latent fingerprint enhancement via multi-scale patch based sparse representation’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (1), pp. 615.
    4. 4)
      • 36. Borra, S.R., Reddy, G.J., Reddy, E.S.: ‘An efficient fingerprint enhancement technique using wave atom transform and mcs algorithm’, Proc. Comput. Sci., 2016, 89, pp. 785793.
    5. 5)
      • 13. Watson, C.I., Garris, M.D., Tabassi, E., et al: ‘User's guide to NIST biometric image software (NBIS)’, 2007.
    6. 6)
      • 14. ‘FingerJetFX’: https://github.com/FingerJetFXOSE/FingerJetFXOSE, 2012.
    7. 7)
      • 67. Schuch, P., Schulz, S., Busch, C.: ‘De-convolutional auto-encoder for enhancement of fingerprint samples’. 6th Int. Conf. on Image Processing Theory Tools and Applications (IPTA), 2016, 2016, pp. 17.
    8. 8)
      • 76. Zhang, J., Lai, R., Kuo, C.-C.J.: ‘Latent fingerprint segmentation with adaptive total variation model’. 5th IAPR Int. Conf. on Biometrics (ICB), 2012, 2012, pp. 189195.
    9. 9)
      • 54. Abdallah, M.B., Malek, J., Azar, A.T., et al: ‘Adaptive noise-reducing anisotropic diffusion filter’, Neural Comput. Appl., 2016, 27, (5), pp. 12731300.
    10. 10)
      • 56. Khachay, M.Y., Pasynkov, M.: ‘Theoretical approach to developing efficient algorithms of fingerprint enhancement’. Int. Conf. on Analysis of Images, Social Networks and Texts, 2015, pp. 8395.
    11. 11)
      • 47. Khan, T.M., Khan, M.A., Kong, Y.: ‘Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters’, Opt.-Int. J. Light Electron Opt., 2014, 125, (16), pp. 42064214.
    12. 12)
      • 41. Mohammedsayeemuddin, S., Gonsai, S.K., Vandra, D.: ‘Efficient fingerprint image enhancement algorithm based on Gabor filter’, Int. J. Res. Eng. Technol., 2014, 3, (4), pp. 809813.
    13. 13)
      • 27. Selvi, M., George, A.: ‘Fbfet: fuzzy based fingerprint enhancement technique based on adaptive thresholding’. Fourth Int. Conf. on Computing, Communications and Networking Technologies (ICCCNT), 2013, 2013, pp. 15.
    14. 14)
      • 53. Khan, T.M., Khan, M.A., Kong, Y., et al: ‘Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case’, EURASIP J. Image Video Process., 2016, 2016, (1), pp. 120.
    15. 15)
      • 19. Bouaziz, A., Draa, A., Chikhi, S.: ‘Bat algorithm for fingerprint image enhancement’. 12th Int. Symp. Programming and Systems (ISPS), 2015, 2015, pp. 18.
    16. 16)
      • 34. Bandur, M.V., Popovic, B.M., Raicevic, A.M., et al: ‘Improving minutiae extraction in fingerprint images through robust enhancement’. 21st Telecommunications Forum (TELFOR), 2013, 2013, pp. 506509.
    17. 17)
      • 35. Sutthiwichaiporn, P., Areekul, V.: ‘Adaptive boosted spectral filtering for progressive fingerprint enhancement’, Pattern Recognit., 2013, 46, (9), pp. 24652486.
    18. 18)
      • 8. Rajin, R., Ajith, K.: ‘Comparative study on various fingerprint image enhancement techniques’, Compusoft, 2015, 4, (2), p. 1502.
    19. 19)
      • 15. Baig, A.R., Baig, A.R., Khurshid, K.: ‘Fingerprint enhancement over the past few years’. Fourth Int. Conf. on Aerospace Science and Engineering (ICASE), 2015, 2015, pp. 17.
    20. 20)
      • 72. Hong, L., Wan, Y., Jain, A.: ‘Fingerprint image enhancement: algorithm and performance evaluation’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (8), pp. 777789.
    21. 21)
      • 70. Zuiderveld, K.: ‘Contrast limited adaptive histogram equalization, in graphics gems IV’ (Academic Press Professional, Inc., 1994), pp. 474485.
    22. 22)
      • 45. Zahedi, M., Ghadi, O.R.: ‘Combining Gabor filter and FFT for fingerprint enhancement based on a regional adaption method and automatic segmentation’, Signal Image Video Process., 2015, 9, (2), pp. 267275.
    23. 23)
      • 80. NIST: ‘NFIQ 2.0 – NIST fingerprint image quality’. Technical Report, National Institute of Standards and Technology, 2016.
    24. 24)
      • 42. Nilam, R.J.K., Joshi, R.: ‘Adaptive fingerprint image enhancement for low-quality of images by learning from the images and features extraction’, Int. Journal of Software and Hardware Research in Engineering, 2014, 2, pp. 139143.
    25. 25)
      • 39. Geng, H., Li, J., Zhou, J., et al: ‘An improved gabor enhancement method for low-quality fingerprint images’. Applied Optics and Photonics China (AOPC2015), 2015, pp. 96751J96751J.
    26. 26)
      • 32. Deshmukh, P., Pathan, S., Pathan, R.: ‘Image enhancement techniques for fingerprint identification’. Image, 2013.
    27. 27)
      • 2. Ezhilmaran, D., Adhiyaman, M.: ‘A review study on fingerprint image enhancement techniques’, Int. J. Comput. Sci. Eng. Technol., 2014, 5, pp. 22293345.
    28. 28)
      • 52. Ahmad, A., Arshad, I., Raja, G.: ‘Partial fingerprint image enhancement using region division technique and morphological transform’, Nucleus, 2015, 52, (2), pp. 6370.
    29. 29)
      • 23. Stephen, M.J., Reddy, P., Vasavi, V., et al: ‘Fingerprint image enhancement through particle swarm optimization’, Int. J. Comput. Appl., 2013, 66, (21), pp. 3440.
    30. 30)
      • 77. Yoon, S., Cao, K., Liu, E., et al: ‘LFIQ: Latent fingerprint image quality’. IEEE Sixth Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), 2013, 2013, pp. 18.
    31. 31)
      • 46. Yang, J., Xiong, N., Vasilakos, A.V.: ‘Two-stage enhancement scheme for low-quality fingerprint images by learning from the images’, IEEE Trans. Hum.-Mach. Syst., 2013, 43, (2), pp. 235248.
    32. 32)
      • 17. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer, 2009).
    33. 33)
      • 62. Jain, A.K., Cao, K.: ‘Fingerprint image analysis: role of orientation patch and ridge structure dictionaries’, Geom. Driven Stat., 2015, 121, p. 288.
    34. 34)
      • 16. Yao, Z., Le Bars, J.-M., Charrier, C., et al: ‘Literature review of fingerprint quality assessment and its evaluation’, IET Biometrics, 2016, 5, (3), pp. 243251.
    35. 35)
      • 64. Wang, X., Liu, M.: ‘Fingerprint enhancement via sparse representation’, in Sun, Zhenan, Shan, Shiguan, Yang, Gongping, Zhou, Jie, Wang, Yunhong, Yin, YiLong (Eds.): ‘Biometric recognition’ (Springer, 2013), pp. 193200.
    36. 36)
      • 58. Sharma, M.K., Joseph, J., Senthilkumaran, P.: ‘Directional edge enhancement using superposed vortex filter’, Opt. Laser Technol., 2014, 57, pp. 230235.
    37. 37)
      • 7. Sawant, H., Deore, M.: ‘A comprehensive review of image enhancement techniques’, Int. J. Comput. Technol. Electron. Eng., 2010, 1, (2), pp. 3944.
    38. 38)
      • 43. Kočevar, M., Kotnik, B., Chowdhury, A., et al: ‘Real-time fingerprint image enhancement with a two-stage algorithm and block–local normalization’, J. Real-Time Image Process., 2014, pp. 110.
    39. 39)
      • 10. Arora, K., Garg, P.: ‘A quantitative survey of various fingerprint enhancement techniques’, Int. J. Comput. Appl., 2011, 28, (5), pp. 2428.
    40. 40)
      • 83. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2002: second fingerprint verification competition’. 16th Int. Conf. on Pattern Recognition, 2002 Proc., 2002, vol. 3, pp. 811814.
    41. 41)
      • 33. Wang, J.-W., Le, N.T., Wang, C.-C., et al: ‘Enhanced ridge structure for improving fingerprint image quality based on a wavelet domain’, IEEE Signal Process. Lett., 2015, 22, (4), pp. 390394.
    42. 42)
      • 24. Stephen, M.J., Reddy, P.P.: ‘Design of new parameterized transformation functions and multi objective criterion for fingerprint image enhancement’, Inf. Sci. Technol., 2014, 3, (2), p. 54.
    43. 43)
      • 29. Neethu, S., Sreelakshmi, S., Sankar, D.: ‘Enhancement of fingerprint using fft×|FFT|n filter’, Proc. Comput. Sci., 2015, 46, pp. 15611568.
    44. 44)
      • 1. ISO: ‘Information technology – vocabulary – part 37: biometrics’, ISO 2382-37:2012 (International Organization for Standardization, Geneva, Switzerland, 2012).
    45. 45)
      • 61. Cao, K., Liu, E., Jain, A.K.: ‘Segmentation and enhancement of latent fingerprints: a coarse to fine ridge structure dictionary’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (9), pp. 18471859.
    46. 46)
      • 4. Misra, D.K., Tripathi, S., Misra, D.: ‘A review report on fingerprint image enhancement techniques’. IJETTCS, 2013, vol. 2.
    47. 47)
      • 51. Baig, A.R., Huqqani, I., Khurshid, K.: ‘Enhancement of latent fingerprint images with segmentation perspective’. 11th Int. Conf. on Signal-Image Technology & Internet-Based Systems (SITIS), 2015, 2015, pp. 132138.
    48. 48)
      • 78. Tabassi, E., Wilson, C., Watson, C.: ‘Nist fingerprint image quality’, NIST Research Report NISTIR7151, 2004, pp. 3436.
    49. 49)
      • 30. Tarar, S., Kumar, E.: ‘Fingerprint image enhancement: iterative fast Fourier transform algorithm and performance evaluation’, Int. J. Hybrid. Inf. Technol., 2013, 6, (4), pp. 1120.
    50. 50)
      • 71. Bradski, G.: ‘Dr. Dobb's Journal of Software Tools’, 2000.
    51. 51)
      • 48. Ahmed, H.H., Kelash, H.M., Tolba, M., et al: ‘Fingerprint image enhancement based on threshold fast discrete curvelet transform (FDCT) and Gabor filters’, Int. J. Comput. Appl., 2015, 110, (3), pp. 3341.
    52. 52)
      • 18. Bouaziz, A., Draa, A., Chikhi, S.: ‘A cuckoo search algorithm for fingerprint image contrast enhancement’. Second World Conf. on Complex Systems (WCCS), 2014, 2014, pp. 678685.
    53. 53)
      • 11. Esan, O.A., Zuva, T., Ngwira, S.M., et al: ‘Performance improvement of authentication of fingerprints using enhancement and matching algorithms’, Int. J. Emerg. Technol. Adv. Eng., 2013, 3, (2), pp. 472482.
    54. 54)
      • 75. Buades, A., Le, T.M., Morel, J.-M., et al: ‘Fast cartoon + texture image filters’, IEEE Trans. Image Process., 2010, 19, (8), pp. 19781986.
    55. 55)
      • 82. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2000: fingerprint verification competition’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (3), pp. 402412.
    56. 56)
      • 86. Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., et al: ‘MCYT baseline corpus: a bimodal biometric database’. Vision, Image and Signal Processing, IEE Proc., 2003, vol. 150, pp. 395401.
    57. 57)
      • 31. Lee, S.-H., Jeong, H., Moon, K.-I.: ‘Fingerprint singular point enhancement through angular bandwidth allocation filtering’, Int. Inf. Inst., Tokyo Inf., 2015, 18, (10), p. 4237.
    58. 58)
      • 79. NIST: ‘NFIQ2.0: NIST Fingerprint Image Quality 2.0’. Available at http://www.nist.gov/itl/iad/ig/development\_nfiq\_2.cfm, 2016.
    59. 59)
      • 38. Rao, D.K., Kishore, G., Vasavi, G.: ‘Adaptive fingerprint enhancement’, Int. J. Future Gener. Commun. Netw., 2014, 7, (4), pp. 159170.
    60. 60)
      • 68. Khan, M.A., Khan, T.M.: ‘Fingerprint image enhancement using data driven directional filter bank’, Opt.-Int. J. Light Electron Opt., 2013, 124, (23), pp. 60636068.
    61. 61)
      • 26. Kabir, W.: ‘A new three-stage scheme for fingerprint enhancement and its impact on fingerprint recognition’. PhD thesis, Concordia University, 2013.
    62. 62)
      • 22. Iloanusi, O.N.: ‘Effective statistical-based and dynamic fingerprint preprocessing technique’, IET Biometrics, 2016, 6, (1), pp. 918.
    63. 63)
      • 84. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2004: third fingerprint verification competition, in biometric authentication’ (Springer, 2004), pp. 17.
    64. 64)
      • 60. Feng, J., Zhou, J., Jain, A.K.: ‘Orientation field estimation for latent fingerprint enhancement’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (4), pp. 925940.
    65. 65)
      • 73. Greenberg, S., Aladjem, M., Kogan, D., et al: ‘Fingerprint image enhancement using filtering techniques’. Proc. 15th Int. Conf. on Pattern Recognition, 2000, 2000, vol. 3, pp. 322325.
    66. 66)
      • 55. Gottschlich, C.: ‘Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement’, IEEE Trans. Image Process., 2012, 21, (4), pp. 22202227.
    67. 67)
      • 69. Liu, F., Zhang, D.: ‘3D fingerprint reconstruction system using feature correspondences and prior estimated finger model’, Pattern Recognit., 2014, 47, (1), pp. 178193.
    68. 68)
      • 20. Ghosh, S., Roy, S., Kumar, U., et al: ‘Gray level image enhancement using cuckoo search algorithm’, in Thampi, Sabu M., Gelbukh, Alexander, Mukhopadhyay, Jayanta (Eds.): ‘Advances in signal processing and intelligent recognition systems’ (Springer, 2014), pp. 275286.
    69. 69)
      • 63. Jain, A.K., Arora, S.S., Best-Rowden, L., et al: ‘Giving infants an identity: fingerprint sensing and recognition’. Proc. of the Eighth Int. Conf. on Information and Communication Technologies and Development, 2016, p. 29.
    70. 70)
      • 25. Kabir, W., Ahmad, M.O., Swamy, M.: ‘Enhancement of low-quality fingerprint images by a three-stage filtering scheme’. IEEE 56th Int. Midwest Symp. on Circuits and Systems (MWSCAS), 2013, 2013, pp. 13061309.
    71. 71)
      • 21. Mahashwari, T., Asthana, A.: ‘Image enhancement using fuzzy technique’, Int. J. Res. Eng. Sci. Technol., 2013, 2, (2), pp. 14.
    72. 72)
      • 49. Divya, V.: ‘Adaptive fingerprint image enhancement based on spatial contextual filtering and preprocessing of data’, Int. J. Comput. Technol., 2014, 1, pp. 5665.
    73. 73)
      • 59. Cătălin, L.: ‘Development of optimal filters obtained through convolution methods, used for fingerprint image enhancement and restoration’, Public Adm., 2014, 14, (2), p. 20.
    74. 74)
      • 74. Watson, C., Candela, G., Grother, P.: ‘Comparison of FFT fingerprint filtering methods for neural network classification’. NISTIR, 1994.
    75. 75)
      • 85. Cappelli, R., Ferrara, M., Franco, A., et al: ‘Fingerprint verification competition 2006’, Biom. Technol. Today, 2007, 15, (7), pp. 79.
    76. 76)
      • 9. Wang, Z., Chen, S., Busch, C., et al: ‘Performance evaluation of fingerprint enhancement algorithms’. Congress on Image and Signal Processing, 2008, CISP'08, 2008, vol. 3, pp. 389393.
    77. 77)
      • 12. Klir, T.: ‘Fingerprint image enhancement with easy to use algorithms’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2015, 2015, pp. 14.
    78. 78)
      • 44. Ghafoor, M., Taj, I.A., Ahmad, W., et al: ‘Efficient 2-fold contextual filtering approach for fingerprint enhancement’, IET Image Process., 2014, 8, (7), pp. 417425.
    79. 79)
      • 6. Abbood, A.A., Sulong, G., Peters, S.: ‘A review of fingerprint image pre-processing’, J. Teknol., 2014, 69, pp. 7984.
    80. 80)
      • 81. Olsen, M.A., Šmida, V., Busch, C.: ‘Finger image quality assessment features – definitions and evaluation’ (IET Biometrics, 2015).
    81. 81)
      • 37. Bartunek, J.S., Nilsson, M., Sallberg, B., et al: ‘Adaptive fingerprint image enhancement with emphasis on preprocessing of data’, IEEE Trans. Image Process., 2013, 22, (2), pp. 644656.
    82. 82)
      • 57. Mei, Y., Zhao, B., Zhou, Y., et al: ‘Orthogonal curved-line gabor filter for fast fingerprint enhancement’, Electron. Lett., 2014, 50, (3), pp. 175177.
    83. 83)
      • 87. Watson, C.I.: ‘NIST special database 14: Mated fingerprint cards pairs 2 version 2’. Technical Report, Citeseer, 2001.
    84. 84)
      • 66. Kumar, S., Velusamy, R.L.: ‘Latent fingerprint preprocessing: orientation field correction using region wise dictionary’. Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), 2015, 2015, pp. 12381243.
    85. 85)
      • 3. Misra, D.K., Tripathi, S., Misra, D.: ‘A review report on fingerprint image enhancement filter’, Int. J. Comput. Sci. Eng. Inf. Technol. Res., 2013, 1, (3), pp. 403416.
    86. 86)
      • 28. Hari, V., Raj, V.J., Gopikakumari, R.: ‘Unsharp masking using quadratic filter for the enhancement of fingerprints in noisy background’, Pattern Recognit., 2013, 46, (12), pp. 31983207.
    87. 87)
      • 5. Kaur, P., Kaur, J.: ‘A review paper on fingerprint image enhancement with different methods’, Int. J. Mod. Eng. Res., 2013, 3, (4).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0088
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address