http://iet.metastore.ingenta.com
1887

Perfect fingerprint orientation fields by locally adaptive global models

Perfect fingerprint orientation fields by locally adaptive global models

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fingerprint recognition is widely used for verification and identification in many commercial, governmental and forensic applications. The orientation field (OF) plays an important role at various processing stages in fingerprint recognition systems. OFs are used for image enhancement, fingerprint alignment, for fingerprint liveness detection, fingerprint alteration detection and fingerprint matching. In this study, a novel approach is presented to globally model an OF combined with locally adaptive methods. The authors show that this model adapts perfectly to the ‘true OF’ in the limit. This perfect OF is described by a small number of parameters with straightforward geometric interpretation. Applications are manifold: Quick expert marking of very poor quality (for instance latent) OFs, high-fidelity low parameter OF compression and a direct road to ground truth OFs markings for large databases, say. In this contribution, they describe an algorithm to perfectly estimate OF parameters automatically or semi-automatically, depending on image quality, and they establish the main underlying claim of high-fidelity low parameter OF compression.

References

    1. 1)
      • 1. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer, London, UK, 2009).
    2. 2)
      • 2. Thai, D.H., Huckemann, S., Gottschlich, C.: ‘Filter design and performance evaluation for fingerprint image segmentation’, PLoS ONE, 2016, 11, (5), p. e0154160.
    3. 3)
      • 3. Gottschlich, C., Schönlieb, C.-B.: ‘Oriented diffusion filtering for enhancing low-quality fingerprint images’, IET Biometrics, 2012, 1, (2), pp. 105113.
    4. 4)
      • 4. Gottschlich, C.: ‘Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement’, IEEE Trans. Image Process., 2012, 21, (4), pp. 22202227.
    5. 5)
      • 5. Chikkerur, S., Cartwright, A., Govindaraju, V.: ‘Fingerprint image enhancement using STFT analysis’, Pattern Recognit., 2007, 40, (1), pp. 198211.
    6. 6)
      • 6. Bartůněk, J.S., Nilsson, M., Sällberg, B., et al: ‘Adaptive fingerprint image enhancement with emphasis on preprocessing of data’, IEEE Trans. Image Process., 2013, 22, (2), pp. 644656.
    7. 7)
      • 7. Ghafoor, M., Taj, I.A., Ahmad, W., et al: ‘Efficient 2-fold contextual filtering approach for fingerprint enhancement’, IET Image Process., 2014, 8, (7), pp. 417425.
    8. 8)
      • 8. Gottschlich, C., Marasco, E., Yang, A.Y., et al: ‘Fingerprint liveness detection based on histograms of invariant gradients’. Proc. IJCB, Clearwater, FL, USA, September 2014, pp. 17.
    9. 9)
      • 9. Gottschlich, C.: ‘Convolution comparison pattern: an efficient local image descriptor for fingerprint liveness detection’, PLoS ONE, 2016, 11, (2), p. e0148552.
    10. 10)
      • 10. Sousedik, C., Busch, C.: ‘Presentation attack detection methods for fingerprint recognition systems: a survey’, IET Biometrics, 2014, 3, (4), pp. 219233.
    11. 11)
      • 11. Gottschlich, C., Mikaelyan, A., Olsen, M.A., et al: ‘Improving fingerprint alteration detection’. Proc. ISPA, Zagreb, Croatia, September 2015, pp. 8588.
    12. 12)
      • 12. Bigun, J., Mikaelyan, A.: ‘Dense frequency maps by structure tensor and logarithmic scale space: application to forensic fingerprints’, 2015, http://www.diva-portal.org/smash/get/diva2:810855/FULLTEXT01.pdf.
    13. 13)
      • 13. Yoon, S., Feng, J., Jain, A.K.: ‘Altered fingerprints: analysis and detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (3), pp. 451464.
    14. 14)
      • 14. Ellingsgaard, J., Sousedik, C., Busch, C.: ‘Detecting fingerprint alterations by orientation field and minutiae orientation analysis’. Proc. IWBF, Valletta, Malta, March 2014, pp. 16.
    15. 15)
      • 15. Tico, M., Kuosmanen, P.: ‘Fingerprint matching using an orientation-based minutia descriptor’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (8), pp. 10091014.
    16. 16)
      • 16. Gottschlich, C.: ‘Fingerprint growth prediction, image preprocessing and multi-level judgment aggregation’. PhD thesis, University of Goettingen, Goettingen, Germany, April 2010.
    17. 17)
      • 17. Yager, N., Amin, A.: ‘Evaluation of fingerprint orientation field registration algorithms’. Proc. ICPR, Cambridge, UK, August 2004.
    18. 18)
      • 18. Krish, R.P., Fierrez, J., Ramos, D., et al: ‘Pre-registration of latent fingerprints based on orientation field’, IET Biometrics, 2015, 4, (2), pp. 4252.
    19. 19)
      • 19. Tams, B.: ‘Absolute fingerprint pre-alignment in minutiae-based cryptosystems’. Proc. BIOSIG, Darmstadt, Germany, September 2013, pp. 7586.
    20. 20)
      • 20. Tams, B.: ‘Cryptanalysis of the fuzzy vault for fingerprints: vulnerabilities and countermeasures’. PhD thesis, University of Goettingen, Goettingen, Germany, December 2012.
    21. 21)
      • 21. Tams, B.: ‘Unlinkable minutiae-based fuzzy vault for multiple fingerprints’, IET Biometrics, 2016, 5, (3), p. 170180.
    22. 22)
      • 22. Cappelli, R., Lumini, A., Maio, D., et al: ‘Fingerprint classification by directional image partitioning’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21, (5), pp. 402421.
    23. 23)
      • 23. Galar, M., Derrac, J., Peralta, D., et al: ‘A survey of fingerprint classification part I: taxonomies on feature extraction methods and learning models’, Knowl.-Based Syst., 2015, 81, pp. 7697.
    24. 24)
      • 24. Cappelli, R., Erol, A., Maio, D., et al: ‘Synthetic fingerprint-image generation’. Proc. 15th Int. Conf. Pattern Recognition, ICPR, Barcelona, Spain, September 2000, pp. 37.
    25. 25)
      • 25. Araque, J.L., Baena, M., Chalela, B.E., et al: ‘Synthesis of fingerprint images’. Proc. 16th Int. Conf. Pattern Recognition (ICPR), 2002, pp. 422425.
    26. 26)
      • 26. Kücken, M., Champod, C.: ‘Merkel cells and the individuality of friction ridge skin’, J. Theor. Biol., 2013, 317, pp. 229237.
    27. 27)
      • 27. Imdahl, C., Huckemann, S., Gottschlich, C.: ‘Towards generating realistic synthetic fingerprint images’. Proc. ISPA, Zagreb, Croatia, September 2015, pp. 8084.
    28. 28)
      • 28. Gottschlich, C., Huckemann, S.: ‘Separating the real from the synthetic: minutiae histograms as fingerprints of fingerprints’, IET Biometrics, 2014, 3, (4), pp. 291301.
    29. 29)
      • 29. Vizcaya, P.R., Gerhardt, L.A.: ‘A nonlinear orientation model for global description of fingerprints’, Pattern Recognit., 1996, 29, (7), pp. 12211231.
    30. 30)
      • 30. Gottschlich, C., Mihăilescu, P., Munk, A.: ‘Robust orientation field estimation and extrapolation using semilocal line sensors’, IEEE Trans. Inf. Forensics Sec., 2009, 4, (4), pp. 802811.
    31. 31)
      • 31. Qian, K., Schott, M., Zheng, W., et al: ‘Context-based approach of separating contactless captured high-resolution overlapped latent fingerprints’, IET Biometrics, 2014, 3, (2), pp. 101112.
    32. 32)
      • 32. Feng, J., Shi, Y., Zhou, J.: ‘Robust and efficient algorithms for separating latent overlapped fingerprints’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 14981510.
    33. 33)
      • 33. Zhao, Q., Jain, A.K.: ‘Model based separation of overlapping latent fingerprints’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (3), pp. 904918.
    34. 34)
      • 34. Hildebrandt, M., Dittmann, J.: ‘StirTraceV2.0: enhanced benchmarking and tuning of printed fingerprint detection’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (4), pp. 833848.
    35. 35)
      • 35. Bigun, J., Granlund, G.H.: ‘Optimal orientation detection of linear symmetry’. Proc. ICCV, London, UK, June 1987, pp. 433438.
    36. 36)
      • 36. Bigun, J.: ‘Recognition of local symmetries in gray value images by harmonic functions’. Proc. ICPR, Rome, Italy, November 1988, pp. 345347.
    37. 37)
      • 37. Bazen, A.M., Gerez, S.H.: ‘Systematic methods for the computation of the directional fields and singular points of fingerprints’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 905919.
    38. 38)
      • 38. Bigun, J.: ‘Vision with direction’ (Springer, Berlin, Germany, 2006).
    39. 39)
      • 39. Larkin, K.G.: ‘Uniform estimation of orientation using local and nonlocal 2-D energy operators’, Opt. Express, 2005, 13, (20), pp. 80978121.
    40. 40)
      • 40. Gottschlich, C., Mihăilescu, P., Munk, A.: ‘Robust orientation field estimation in fingerprint images with broken ridge lines’. Proc. ISPA, Salzburg, Austria, September 2009, pp. 529533.
    41. 41)
      • 41. Eltzner, B., Wollnik, C., Gottschlich, C., et al: ‘The filament sensor for near real-time detection of cytoskeletal fiber structures’, PLoS ONE, 2015, 10, (5), p. e0126346.
    42. 42)
      • 42. Feng, J., Zhou, J., Jain, A.K.: ‘Orientation field estimation for latent fingerprint enhancement’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (4), pp. 925940.
    43. 43)
      • 43. Huckemann, S., Hotz, T., Munk, A.: ‘Global models for the orientation field of fingerprints: an approach based on quadratic differentials’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (9), pp. 15071517.
    44. 44)
      • 44. Turroni, F., Maltoni, D., Cappelli, R., et al: ‘Improving fingerprint orientation extraction’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (3), pp. 10021013.
    45. 45)
      • 45. Sherlock, B.G., Monro, D.M.: ‘A model for interpreting fingerprint topology’, Pattern Recognit., 1993, 26, (7), pp. 10471055.
    46. 46)
      • 46. Ram, S., Bischof, H., Birchbauer, J.: ‘Modelling fingerprint ridge orientation using Legendre polynomials’, Pattern Recognit., 2010, 43, (1), pp. 342357.
    47. 47)
      • 47. Cappelli, R., Maio, D., Maltoni, D.: ‘Semi-automatic enhancement of very low quality fingerprints’. Proc. ISPA, Salzburg, Austria, September 2009, pp. 678683.
    48. 48)
      • 48. Cappelli, R., Maltoni, D., Turroni, F.: ‘Benchmarking local orientation extraction in fingerprint recognition’. Proc. 20th Int. Conf. Pattern Recognition (ICPR), Istanbul, Turkey, August 2010, pp. 11441147.
    49. 49)
      • 49. Oehlmann, L., Huckemann, S., Gottschlich, C.: ‘Performance evaluation of fingerprint orientation field reconstruction methods’. Proc. IWBF, Gjovik, Norway, March 2015, pp. 16.
    50. 50)
      • 50. Thai, D.H., Gottschlich, C.: ‘Global variational method for fingerprint segmentation by three-part decomposition’, IET Biometrics, 2016, 5, (2), pp. 120130.
    51. 51)
      • 51. Thai, D.H., Gottschlich, C.: ‘Directional global three-part image decomposition’, EURASIP J. Image Video Process., 2016, 2016, (12), pp. 120.
    52. 52)
      • 52. Yoon, S., Feng, J., Jain, A.K.: ‘On latent fingerprint enhancement’. Proc. BTHI, Orlando, FL, USA, April 2010, pp. 110.
    53. 53)
      • 53. Salomon, D.: ‘Data Compression’ (Springer, London, UK, 2007, 4th edn.).
    54. 54)
      • 54. Thärnå, J., Nilsson, K., Bigun, J.: ‘Orientation scanning to improve lossless compression of fingerprint images’. Proc. AVBPA, Guildford, UK, June 2003, pp. 343350.
    55. 55)
      • 55. Larkin, K.G., Fletcher, P.A.: ‘A coherent framework for fingerprint analysis: are fingerprints holograms?’, Opt. Express, 2007, 15, (14), pp. 86678677.
    56. 56)
      • 56. Shao, G., Wu, Y., Yong, A., et al: ‘Fingerprint compression based on sparse representation’, IEEE Trans. Image Process., 2014, 23, (2), pp. 489501.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0087
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address