http://iet.metastore.ingenta.com
1887

Palm vein recognition scheme based on an adaptive Gabor filter

Palm vein recognition scheme based on an adaptive Gabor filter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We propose a novel palm vein recognition scheme based on an adaptive 2D Gabor filter. Three key steps were studied in this scheme: region of interest (ROI) extraction, adaptive Gabor filtering, and template matching. First, in the palm vein image extraction step, the authors used the index finger on both sides of the valley to locate the square area, and then iteratively expanded the area of the square box to maximise the ROI. Second, in the feature extraction step, a novel parameter selection scheme was proposed for optimising the Gabor filter. Third, in the template matching step, the author presented a novel template matching algorithm referred to as the minimum normalised Hamming distance. Experimental results demonstrated that the scheme achieved good performance with an EER of 0.12%.

References

    1. 1)
      • 1. Lee, J.C., Lee, C.H., Hsu, C.B., et al: ‘Dorsal hand vein recognition based on 2D Gabor filters’, Imaging Sci. J., 2014, 62, (3), pp. 127138.
    2. 2)
      • 2. Lin, C.L., Fan, K.C.: ‘Biometric verification using thermal images of palm-dorsa vein patterns’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 199213.
    3. 3)
      • 3. Cross, J.M., Smith, C.L.: ‘Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification’. Int. Carnahan Conf. on Security Technology, Sanderstead, UK, October 1995, pp. 2035.
    4. 4)
      • 4. Zhou, Y., Kumar, A.: ‘Human identification using palm-vein images’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (4), pp. 12591274.
    5. 5)
      • 5. Song, W., Kim, T., Kim, H.C., et al: ‘A finger-vein verification system using mean curvature’, Pattern Recognit. Lett., 2011, 32, (11), pp. 15411547.
    6. 6)
      • 6. Mirmohamadsadeghi, L., Drygajlo, A.: ‘Palm vein recognition with local binary patterns and local derivative patterns’. Int. Joint Conf. on Biometrics, Washington, USA, October 2011, pp. 16.
    7. 7)
      • 7. Chen, J., Shan, S., He, C., et al: ‘WLD: a robust local image descriptor’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 32, (9), pp. 17051720.
    8. 8)
      • 8. Lee, J.-C.: ‘A novel biometric system based on palm vein image’, Pattern Recognit. Lett., 2012, 33, (12), pp. 15201528.
    9. 9)
      • 9. Li, X., Guo, S., Gao, F., et al: ‘Vein pattern recognitions by moment invariants’. Int. Conf. on Bioinformatics & Biomedical Engineering, Wuhan, China, July 2007, pp. 612615.
    10. 10)
      • 10. Kang, W.X., Liu, Y., Wu, Q.X., et al: ‘Contact-free palm-vein recognition based on local invariant features’, PLoS One, 2014, 9, (5), pp. 12391245.
    11. 11)
      • 11. Liu, Z., Yin, Y., Wang, H., et al: ‘Finger vein recognition with manifold learning’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 275282.
    12. 12)
      • 12. Yang, G., Xi, X., Yin, Y.: ‘Finger vein recognition based on (2D)(2) PCA and metric learning’, J. Biomed. Biotechnol., 2012, 2012, (3), p. 324249.
    13. 13)
      • 13. Kang, W.X., Wu, Q.X.: ‘Contactless palm vein recognition using a mutual foreground-based local binary pattern’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (11), pp. 19741985.
    14. 14)
      • 14. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: ‘Gabor filter-based edge detection’, Pattern Recogn., 1992, 25, (12), pp. 14791494.
    15. 15)
      • 15. Han, W.Y., Lee, J.C.: ‘Palm vein recognition using adaptive Gabor filter’, Expert Syst. Appl., 2012, 39, (18), pp. 1322513234.
    16. 16)
      • 16. Jia, W., Huang, D.-S., Zhang, D.: ‘Palmprint verification based on robust line orientation code’, Pattern Recogn., 2008, 41, (5), pp. 15041513.
    17. 17)
      • 17. Zhou, Y.J., Liu, Y.Q., Feng, Q.J., et al: ‘Palm-vein classification based on principal orientation features’, PLoS One, 2014, 9, (11), p. 12.
    18. 18)
      • 18. Yue, F., Zuo, W., Zhang, D., et al: ‘Orientation selection using modified FCM for competitive code-based palmprint recognition’, Pattern Recogn., 2009, 42, (11), pp. 28412849.
    19. 19)
      • 19. ‘CASIA-MS-PalmprintV1’, http://biometrics.idealtest.org/, accessed 20 January 2016.
    20. 20)
      • 20. Wang, J.-G., Yau, W.-Y., Suwandy, A., et al: ‘Fusion of palmprint and palm vein images for person recognition based on ‘Laplacianpalm’ feature’. 2007 IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007, pp. 18.
    21. 21)
      • 21. Wang, L., Leedham, G., Siu-Yeung Cho, D.: ‘Minutiae feature analysis for infrared hand vein pattern biometrics’, Pattern Recogn., 2008, 41, (3), pp. 920929.
    22. 22)
      • 22. Wang, J.-G., Yau, W.-Y., Suwandy, A., et al: ‘Person recognition by fusing palmprint and palm vein images based on ‘Laplacianpalm’ representation’, Pattern Recogn., 2008, 41, (5), pp. 15141527.
    23. 23)
      • 23. Yan, X.K., Kang, W.X., Deng, F.Q., et al: ‘Palm vein recognition based on multi-sampling and feature-level fusion’, Neurocomputing, 2015, 151, (151), pp. 798807.
    24. 24)
      • 24. Zhang, D., Guo, Z., Lu, G., et al: ‘Online joint palmprint and palmvein verification’, Expert Syst. Appl., 2011, 38, (3), pp. 26212631.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0085
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address