http://iet.metastore.ingenta.com
1887

Multimodal biometric recognition using human ear and palmprint

Multimodal biometric recognition using human ear and palmprint

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Combining multiple human trait features is a proven and effective strategy for biometric-based personal identification. In this study, the authors investigate the fusion of two biometric modalities, i.e. ear and palmprint, at feature-level. Ear and palmprint patterns are characterised by a rich and stable structure, which provides a large amount of information to discriminate individuals. Local texture descriptors, namely local binary patterns, weber local descriptor, and binarised statistical image features, were used to extract the discriminant features for robust human identification. The authors’ extensive experimental analysis based on the benchmark IIT Delhi-2 ear and IIT Delhi palmprint databases confirmed that the proposed multimodal biometric system is able to increase recognition rates compared with that produced by single-modal biometrics, attaining a recognition rate of 100%.

References

    1. 1)
      • 1. Mamta, , Hanmandlu, M.: ‘Multimodal biometric system built on the new entropy function for feature extraction and the refined scores as a classifier’, Expert Syst. Appl., 2015, 42, pp. 37023723.
    2. 2)
      • 2. Ross, A., Jain, A.K.: ‘Multimodal biometrics: an overview’. Proc. Conf: European Signal Processing (EUSIPCO), Vienna, Austria, 6–10 September 2004, pp. 12211224.
    3. 3)
      • 3. Jing, X.Y., Zhang, D.: ‘A face and palmprint recognition approach based on discriminant DCT feature extraction’, IEEE Trans. Syst. Man Cybern. B, 2004, 34, (6), pp. 24052415.
    4. 4)
      • 4. Xu, Y., Lu, Y.: ‘Adaptive weighted fusion: A novel fusion approach for image classification’, Neurocomputing, 2015, 168, pp. 566574.
    5. 5)
      • 5. Noor, A., Aggoun, A., Abbes, A.: ‘Speaker identification using multimodal neural networks and wavelet analysis’, IET Biometrics, 2015, 4, (1), pp. 1828.
    6. 6)
      • 6. Jing, X.Y., Yao, Y.F., Zhang, D., et al: ‘Face and palmprint pixel level fusion and Kernel DCV-RBF classifier for small sample biometric recognition’, Pattern Recogn., 2007, 40, (11), pp. 32093224.
    7. 7)
      • 7. Nandakumar, K., Chen, Y.S.C., Jain, A.K.: ‘Likelihood ratio-based biometric score fusion’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 342347.
    8. 8)
      • 8. Huang, Z., Liu, Y., Li, X., et al: ‘An adaptive bimodal recognition framework using sparse coding for face and ear’, Pattern Recogn. Lett., 2015, 53, pp. 6976.
    9. 9)
      • 9. Ross, A.: ‘Fusion, feature-level’, in ‘Encyclopedia of Biometrics’, in Stan, Z. L, Anil, J. Eds: (Springer US, 2015), pp. 751757.
    10. 10)
      • 10. Ajay, K., Chenye, W.: ‘Automated human identification using ear imaging’, Pattern Recogn., 2012, 41, pp. 956968.
    11. 11)
      • 11. Ajay, K.: ‘Incorporating cohort information for reliable palmprint authentication’. Computer Vision, Graphics and Image Processing Conf., Bhubneshwar, India, 16–19 December 2008, pp. 583590.
    12. 12)
      • 12. Yuan, L., Mu, Z.C.: ‘Ear recognition based on local information fusion’, Pattern Recogn. Lett., 2012, 33, pp. 182190.
    13. 13)
      • 13. Zhang, B., Mu, Z., Li, C., et al: ‘Robust classification for occluded ear via Gabor scale feature-based non-negative sparse representation’, Opt. Eng., 2014, 53, pp. 111.
    14. 14)
      • 14. Prakasha, S., Guptab, P.: ‘Human recognition using 3D ear images’, Neurocomputing, 2014, 140, pp. 317325.
    15. 15)
      • 15. Suna, X., Wanga, G., Wanga, L., et al: ‘3D ear recognition using local salience and principal manifold’, Graph. Models, 2014, 76, pp. 402412.
    16. 16)
      • 16. Liub, Y., Zhangc, B., Zhang, D.: ‘Ear-parotic face angle: A unique feature for 3D ear recognition’, Pattern Recogn. Lett., 2015, 53, pp. 915.
    17. 17)
      • 17. Zhang, D., Zuo, W.M., Yue, F.: ‘A comparative study of palmprint recognition algorithms’, ACM Comput. Surv., 2012, 44, pp. 137.
    18. 18)
      • 18. Singh, A.K., Dolly Choudhary, D., Tiwari, S.: ‘Feature extraction and classification methods of texture images’ (Lap Lambert Academic Publishing, 2013).
    19. 19)
      • 19. Wang, L., He, D.: ‘Texture classification using texture spectrum’, Pattern Recogn., 1990, 23, pp. 905910.
    20. 20)
      • 20. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 971987.
    21. 21)
      • 21. Jain, A.K.: ‘Fundamentals of digital signal processing’ (Prentice-Hall, Englewood Cliffs, NJ, 1989).
    22. 22)
      • 22. Chen, J., Shan, S., Zhao, G., et al: ‘WLD: a robust local image descriptor’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, pp. 17051720.
    23. 23)
      • 23. Gong, D., Li, S., Xiang, Y.: ‘Face recognition using the weber local descriptor’. IEEE Asian Conf. on Pattern Recognition (ACPR), Beijing, China, 28 November 2011, pp. 589592.
    24. 24)
      • 24. Shuaishi, L., Yan, Z., Keping, L.: ‘Facial expression recognition under partial occlusion Based on weber local descriptor histogram and decision fusion’. 33rd Chinese Control Conf., Nanjing, China, 28–30 July 2014, pp. 46644668.
    25. 25)
      • 25. Kannala, J., Rahtu, E.: ‘BSIF: binarized statistical image features’. Proc. Int. Conf, IEEE 2012 Pattern Recognition, Tsukuba, Japan, 11–15 November 2012, pp. 13631366.
    26. 26)
      • 26. Ghiani, L., Hadid, A., Roli, F.: ‘Fingerprint liveness detection using binarized statistical image features’. Proc. Int. Conf. IEEE Biometrics: Theory, Applications and Systems, Washington DC, USA, 29 September-2 October 2013, pp. 16.
    27. 27)
      • 27. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: ‘Fully automatic face normalization and single sample face recognition in unconstrained environments’, Expert Syst. Appl., 2016, 47, pp. 2334.
    28. 28)
      • 28. Jing, X.Y., Li, S., Lan, C., et al: ‘Color image canonical correlation analysis for face feature extraction and recognition’, Signal Process., 2011, 91, (8), pp. 21322140.
    29. 29)
      • 29. Jing, X.Y., Hu, R., Zhu, Y.P., et al: ‘Intra-view and inter-view supervised correlation analysis for multi-view feature learning’. AAAI Conf. on Artificial Intelligence, July 2014, pp. 18821889.
    30. 30)
      • 30. Hurley, D.J., Nixon, M.S., Carter, J.N.: ‘Force field feature extraction for ear biometrics’, Comput. Vis. Image Underst., 2005, 98, (3), pp. 491512.
    31. 31)
      • 31. Kumar, A., Chenye, W.U.: ‘Automated human identification using ear imaging’, Pattern Recogn., 2012, 45, (3), pp. 956968.
    32. 32)
      • 32. Kumar, A., Singh, G., Kumar, A.R.S.: ‘An improved method for designing quadrature mirror filter banks via unconstrained optimization’, J. Math. Model. Algorithms, 2010, 9, (1), pp. 99111.
    33. 33)
      • 33. Kumar, A., CHAN, T.-S.T.: ‘Robust ear identification using sparse representation of local texture descriptors’, Pattern Recogn., 2013, 46, (1), pp. 7385.
    34. 34)
      • 34. Mamta, , Hanmandlu, M., et al: ‘Robust ear based authentication using local principal independent components’, Expert Syst. Appl., 2013, 40, (16), pp. 64786490.
    35. 35)
      • 35. Basit, A., Shoaib, M.: ‘A human ear recognition method using nonlinear curvelet feature subspace’, Int. J. Comput. Math., 2014, 91, (3), pp. 616624.
    36. 36)
      • 36. Hu, D., Feng, G., Zhou, Z.: ‘Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition’, Pattern Recogn., 2007, 40, pp. 339342.
    37. 37)
      • 37. Madasu, H., Gupta, H., Mittal, N., et al: ‘An authentication system based on palmprint’. Proc. Int. Conf. IEEE Information Technology: New Generations, Las Vegas, USA, 27–29 April 2009, pp. 399404.
    38. 38)
      • 38. Parihar, A.S., Kumar, A., Verma1, O., et al: ‘Point based features for contact-less palmprint images’. Proc. Int. Conf. IEEE Technologies for Homeland Security, Waltham, USA, 12–14 November 2013, pp. 165170.
    39. 39)
      • 39. Kumar, A., Shekhar, S.: ‘Personal identification using multi-biometrics rank-level fusion’, IEEE Trans. Syst. Man Cybern. C Appl. Rev., 2010, 41, pp. 743752.
    40. 40)
      • 40. John, S., Raimond, K.: ‘Palmprint identification based on adaptive neuro-fuzzy inference system’, Int. J. Res. Appl. Sci. Eng. Tchnol., 2014, 2, pp. 138142.
    41. 41)
      • 41. Zhang, L., Shen, Y., Li, H., et al: ‘3D palmprint identification using block-wise features and collaborative representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (8), pp. 17301736.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0072
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address