http://iet.metastore.ingenta.com
1887

Optimum scheme selection for face–iris biometric

Optimum scheme selection for face–iris biometric

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Designing a new dynamic and optimal scheme for face–iris fusion based on the score level, feature level and decision level fusion is considered in this study. Prior to implementing the proposed combined level fusion, several schemes are separately implemented at each level of fusion to investigate the performance improvement of each level of fusion on face and iris modalities. In fact, the optimum scheme is constructed by selecting flexible and dynamic features and scores of face and iris biometrics and then combining the advantages of different levels of fusion. Consequently, the scheme produces a set of fast and flexible features and scores for fusion. On the other hand, the idea of threshold-optimised decisions is used in this study to fuse the optimised decisions of face and iris biometrics. Experimental results on verification rates demonstrate a significant improvement of proposed combined level fusion scheme over unimodal and multimodal fusion methods.

References

    1. 1)
      • 1. Liau, H.F., Isa, D.: ‘Feature selection for support vector machine-based face–iris multimodal biometric system’, Expert Syst. Appl., 2011, 38, pp. 1110511111.
    2. 2)
      • 2. Proenca, H.P.: ‘Towards non-cooperative biometric iris recognition’. PhD thesis, submitted to Department of Computer Science, University of Beira Interior, 2006.
    3. 3)
      • 3. Nandakumar, K., Chen, Y., Dass, S.C., et al: ‘Likelihood ratio-based biometric score fusion’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 342347.
    4. 4)
      • 4. Ross, A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics’ (Springer-Verlag Edition, 2006).
    5. 5)
      • 5. Raghavendra, R., Dorizzi, B., Rao, A., et al: ‘Designing efficient fusion schemes for multimodal biometric system using face and palmprint’, Pattern Recognit., 2011, 44, (5), pp. 10761088.
    6. 6)
      • 6. Lumini, A., Nanni, L.: ‘Over-complete feature generation and feature selection for biometry’, Expert Syst. Appl., 2008, 35, (4), pp. 20492055.
    7. 7)
      • 7. Gökberk, B., Okan ˙irfanoğlu, M., Akarun, L., et al: ‘Learning the best subset of local features for face recognition, pattern recognition’, 2007, 40, (5), pp. 15201532.
    8. 8)
      • 8. Eskandari, M., Toygar, Ö., Demirel, H.: ‘Feature extractor selection for face–iris multimodal recognition’, ‘Signal, image and video processing, 2014, 8, (6), pp. 11891198.
    9. 9)
      • 9. Zhang, D., Jing, X., Yang, J.: ‘Biometric image discrimination (BID) technologies’ (IGP/IRM Press, 2006).
    10. 10)
      • 10. Nandakumar, K.: ‘Integration of multiple cues in biometric systems’. Master of Science thesis, Michigan State University, 2005.
    11. 11)
      • 11. Lam, L., Suen, C.Y.: ‘Application of majority voting to pattern recognition: an analysis of its behavior and performance’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 1997, 27, (5), pp. 553568.
    12. 12)
      • 12. Morvant, E., Habrard, A., Ayache, S.: ‘Majority vote of diverse classifiers for late fusion’. Joint IAPR Int. Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Berlin Heidelberg, August 2014, pp. 153162.
    13. 13)
      • 13. Ponti, M. P.Jr: ‘Combining classifiers: from the creation of ensembles to the decision fusion’. IEEE 24th SIBGRAPI Conf. on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2011, 2011, pp. 110.
    14. 14)
      • 14. Daugman, J.: ‘Combining multiple biometrics’. Available at http://www.cl.cam.ac.uk/users/jgd1000/combine/combine.html.
    15. 15)
      • 15. Eskandari, M., Toygar, Ö.: ‘Fusion of face and iris biometrics using local and global feature extraction methods’, ‘Signal, image and video processing’, 2014, 8, (6), pp. 9951006.
    16. 16)
      • 16. Wang, F., Han, J.: ‘Multimodal biometric authentication based on score level fusion using support vector machine’, Opto-Electron. Rev., 2009, 17, (1), pp. 5964.
    17. 17)
      • 17. Vasta, M., Singh, R., Noore, A.: ‘Integrating image quality in 2v-SVM biometric match score fusion’, Int. J. Neural Syst., 2007, 17, (5), pp. 343351.
    18. 18)
      • 18. Eskandari, M., Toygar, Ö., Demirel, H.: ‘A new approach for face–iris multimodal biometric recognition using score fusion’, Int. J. Pattern Recognit. Artif. Intell., 2013, 27, (3), p. 1356004.
    19. 19)
      • 19. Huo, G., Liu, Y., Zhu, X., et al: ‘Face–iris multimodal biometric scheme based on feature level fusion’, J. Electron. Imaging, 2015, 24, (6), pp. 063020063020.
    20. 20)
      • 20. Wang, Y., Tan, T., Wang, Y., et al: ‘Combining face and iris biometric for identity verification’. Proc. of 4th Int. Conf. on Audio and Video Based Biometric Person Authentication, 2003, pp. 805813.
    21. 21)
      • 21. Sim, H.M., Asmunia, H., Hassan, R., et al: ‘Multimodal biometrics: weighted score level fusion based on non-ideal iris and face images’, Expert Syst. Appl., 2014, 41, (11), pp. 53905404.
    22. 22)
      • 22. Eskandari, M., Toygar, Ö.: ‘Selection of optimized features and weights on face–iris fusion using distance images’, Comput. Vis. Image Underst., 2015, 137, pp. 6375.
    23. 23)
      • 23. Civicioglu, P.: ‘Backtracking search optimization algorithm for numerical optimization problems’, Appl. Math. Comput., 2013, 219, (15), pp. 81218144.
    24. 24)
      • 24. Biometrics Ideal Test. Available at: http://biometrics.idealtest.org/dbDetailForUser.do?id=4.
    25. 25)
      • 25. AT&T Laboratories Cambridge, the ORL Database of Faces (ORL). Available at http://www.camorl.co.uk/facedatabase.html, accessed 2009.
    26. 26)
      • 26. Bailly, B.E., Bengio, S., Bimbot, F., et al: ‘The BANCA database and evaluation protocol’. Audio and Video-Based Biometric Person Authentication: Proc. of 4th Int. Conf., AVBPA, Germany, 2003 (LNCS, 2688), pp. 625638.
    27. 27)
      • 27. CASIA-IrisV3. Available at http://www.cbsr.ia.ac.cn/IrisDatabase.htm, accessed 2009.
    28. 28)
      • 28. UBIRIS Iris Database. Available at from http://iris.di.ubi.pt, accessed 2009.
    29. 29)
      • 29. Yildiz, M.Ç., Sharifi, O., Eskandari, M.: ‘Log-Gabor transforms and score fusion to overcome variations in appearance for face recognition’. Int. Conf. on Computer Vision and Graphics, 19–21 September 2016 (LNCS, 9972),.
    30. 30)
      • 30. Lei, Y., Guo, Y., Hayat, M., et al: ‘A two-phase weighted collaborative representation for 3D partial face recognition with single sample’, Pattern Recognit., 2016, 52, pp. 218237.
    31. 31)
      • 31. Zhanga, T., Li, X., Tao, D., et al: ‘Multimodal biometrics using geometry preserving projections’, Pattern Recognit., 2008, 41, (3), pp. 805813.
    32. 32)
      • 32. Juefei-Xu, F., Savvides, M.: ‘Multi-class Fukunaga Koontz discriminant analysis for enhanced face recognition’, Pattern Recognit., 2016, 52, pp. 186205.
    33. 33)
      • 33. Al-Maadeed, S., Bourif, M., Bouridane, A., et al: ‘Low-quality facial biometric verification via dictionary-based random pooling’, Pattern Recognit., 2016, 52, pp. 238248.
    34. 34)
      • 34. Frucci, M., Nappi, M., Riccio, D., et al: ‘WIRE: watershed based iris recognition’, Pattern Recognit., 2016, 52, pp. 148159.
    35. 35)
      • 35. Rankin, D.M., Scotney, B.W., Morrow, P.J., et al: ‘Iris recognition failure over time: the effects of texture’, Pattern Recognit., 2012, 45, (1), pp. 145150.
    36. 36)
      • 36. Sahmoud, S.A., Abuhaiba, I.S.: ‘Efficient iris segmentation method in unconstrained environments’, Pattern Recognit., 2013, 46, (12), pp. 31743185.
    37. 37)
      • 37. Pujol, P., Macho, D., Nadeu, C.: ‘On real-time mean-and- variance normalization of speech recognition features’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP2006), Toulouse, France, 2006, pp. 773776.
    38. 38)
      • 38. Karthika, R., Parameswaran, L.: ‘Study of Gabor wavelet for face recognition invariant to pose and orientation’. Proc. of the Int. Conf. on Soft Computing Systems, India, 2016, pp. 501509.
    39. 39)
      • 39. Chen, D., Cao, X., Wen, F., et al: ‘Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification’. Computer Vision and Pattern Recognition (CVPR), 2013.
    40. 40)
      • 40. Podder, P., Khan, T.Z., Khan, M.H., et al: ‘An efficient iris segmentation model based on eyelids and eyelashes detection in iris recognition system’. Int. Conf. on IEEE Computer Communication and Informatics (ICCCI), 2015, pp. 17.
    41. 41)
      • 41. Arora, S., Londhe, N.D., Acharya, A.K.: ‘Human identification based on iris recognition for distance images’, Int. J. Comput. Appl., 2012, 45, (16), pp. 3239.
    42. 42)
      • 42. Tan, C.W., Kumar, A.: ‘A unified framework for automated iris segmentation using distantly acquired face images’, IEEE Trans. Image Process., 2012, 21, (9), pp. 40684079.
    43. 43)
      • 43. Sutra, G., Dorizzi, B., Garcia-Salitcetti, S., et al: ‘(2013, April 23) A biometric reference system for iris. OSIRIS version 4.1’.
    44. 44)
      • 44. Wang, X., Tang, X.: ‘Random sampling for subspace face recognition’, Int. J. Comput. Vis., 2006, 70, (1), pp. 91104.
    45. 45)
      • 45. Sharifi, O., Eskandari, M.: ‘Optimal face–iris multimodal fusion scheme’, Symmetry, 2016, 8, (6), p. pp. 48.
    46. 46)
      • 46. Eskandari, M., Toygar, Ö.: ‘Score level fusion for face–iris multimodal biometric system’. in Gelenbe, , Erol, , Lent, , Ricardo, (Eds.) ‘Information sciences and systems’, (Springer International Publishing, 2013), pp. 199208.
    47. 47)
      • 47. Tao, Q., Veldhuis, R.: ‘Threshold-optimized decision-level fusion and its application to biometrics’, Pattern Recognit., 2009, 42, (5), pp. 823836.
    48. 48)
      • 48. Boser, B.E., Guyon, I., Vapnik, V.: ‘A training algorithm for optimal margin classifiers’. Proc. of the Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144152.
    49. 49)
      • 49. Bucak, S., Jin, R., Jain, A.K.: ‘Multiple kernel learning for visual object recognition: a review’, IEEE Trans. on Pattern Anal. Mach. Intell., 2014, 36, (7), pp. 13541369.
    50. 50)
      • 50. Tao, Q., Raymond, V.: ‘Robust biometric score fusion by naive likelihood ratio via receiver operating characteristics’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (2), pp. 305313.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0060
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address