http://iet.metastore.ingenta.com
1887

access icon free Visual animal biometrics: survey

Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/6/3/IET-BMT.2016.0017.html;jsessionid=1jrepnmlaltot.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2016.0017&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Duyck, J., Finn, C., Hutcheon, A., et al: ‘Sloop: a pattern retrieval engine for individual animal identification’, Pattern Recognit.., 2015, 48, (4), pp. 10591073.
    2. 2)
      • 2. Kühl, H.S., Burghardt, T.: ‘Animal biometrics: quantifying and detecting phenotypic appearance’, Trends Ecol. Evol., 2013, 28, (7), pp. 432441.
    3. 3)
      • 3. Atanbori, J., Duan, W., Appiah, K., et al: ‘A computer vision approach to classification of birds in flight from video sequences’, 2015.
    4. 4)
      • 4. Scott, D.K.: ‘Identification of individual Bewick's swans by bill patterns’, in Stonehouse, B. (ED.): ‘Animal marking: recognition marking of animals in research’ (MacMillan, UK, 1978), pp. 160168.
    5. 5)
      • 5. Klingel, H.: ‘Social organisation and behaviour of the Grevy's zebra’, Z. Tierpsychol., 1974, 36, pp. 3670.
    6. 6)
      • 6. Mizroch, S.A., Harkness, S.A.D.: ‘A test of computer-assisted matching using the North Pacific humpback whale, Megapteranovaeangliae, tail flukes photograph collection’, Mar. Fish. Rev., 2003, 65, pp. 2537.
    7. 7)
      • 7. Bonnell, T.R., Henzi, S.P., Barrett, L.: ‘Sparse movement data can reveal social influences on individual travel decisions’, arXiv preprint arXiv: 1511.01536, 2015.
    8. 8)
      • 8. Forsyth, D.: ‘Building models of animals from video’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (8), pp. 13191334.
    9. 9)
      • 9. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, pp. 16271645.
    10. 10)
      • 10. Pons-Moll, G., Baak, A., Gall, J., et al: ‘Outdoor human motion capture using inverse kinematics and von Mises-Fisher sampling’. Int. Conf. on Computer Vision, Barcelona, November 2011, pp. 12431250.
    11. 11)
      • 11. Shotton, J., Sharp, T., Kipman, A., et al: ‘Real-time human pose recognition in parts from single depth images’. IEEE Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2011, pp. 12971304.
    12. 12)
      • 12. Kumar, R.: ‘Trainable convolution filters and their application to face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, pp. 14231436.
    13. 13)
      • 13. Wright, J.A., Barker, R.J., Schofield, M.R., et al: ‘Incorporating Genotype Uncertainty into Mark-Recapture-Type Models For Estimating Abundance Using DNA Samples’, Biometrics, 2009, 65, (3), pp. 833840.
    14. 14)
      • 14. Poppe, R.: ‘A survey on vision-based human action recognition’, Image Vis. Comput., 2010, 28, (6), pp. 976990.
    15. 15)
      • 15. Wang, L., Suter, D.: ‘Learning and matching of dynamic shape manifolds for human action recognition’, IEEE Trans. Image Process., 2007, 16, pp. 16461661.
    16. 16)
      • 16. Pfister, T.: ‘Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework’. IEEE Int. Conf. Computer Vision Workshops (ICCV Workshops), Barcelona, January 2011, pp. 868875.
    17. 17)
      • 17. Gomez-Marin, A., Paton, J.J., Kampff, A.R., et al: ‘Big behavioral data: psychology, ethology and the foundations of neuroscience’, Nat. Neurosci., 2014, 17, (11), pp. 14551462.
    18. 18)
      • 18. Azhar, M.A.H.B., Hoque, S., Deravi, F.: ‘Automatic identification of wildlife using local binary patterns’. IET Conf. on Image Processing (IPR), London, July 2012, pp. 16.
    19. 19)
      • 19. Speed, C.W., Meekan, M.G., Bradshaw, C.J.: ‘Spot the match: wildlife photo-identification using information theory’, Frontiers in zoology, 2007, 4, (2), pp. 111.
    20. 20)
      • 20. Ahmadian, S.: ‘Heartbeat of a nest: using imagers as biological sensors’, ACM Trans. Sensor Netw. (TOSN), 2010, 6, (3), p. 19.
    21. 21)
      • 21. Estellés-Arolas, E., Navarro-Giner, R., González-Ladrón-de-Guevara, F.: ‘Crowdsourcing Fundamentals: Definition and Typology’, in Garrigos-Simon, F.J., Gil-Pechuán, I., Estelles-Miguel, S. (EDS.): ‘Advances in Crowdsourcing’ (Springer International Publishing, 2015), pp. 3348.
    22. 22)
      • 22. Dietterich, T.G.: ‘Machine learning in ecosystem informatics and sustainability’. 21st Int. Joint Conf. on Artificial Intelligence, Pasadena, California, July 2009, pp. 813.
    23. 23)
      • 23. Coates, A., Karpathy, A., Ng, A.Y.: ‘Emergence of object-selective features in unsupervised feature learning’, Adv. Neural Inf. Process. Syst., 2012, 25, pp. 26902698.
    24. 24)
      • 24. Song, D., Qin, N., Xu, Y., et al: ‘System and algorithms for an autonomous observatory assisting the search for the ivory-billed woodpecker’. IEEE Int. Conf. on Automation Science and Engineering, Arlington, VA, August 2008, pp. 200205.
    25. 25)
      • 25. Croll, D.A., Dewar, H., Dulvy, N.K., et al: ‘Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays’, Aquatic Conserv., Mar. Freshwater Ecosyst., 2015, 26, 3, pp. 562575.
    26. 26)
      • 26. Marshall, A.D., Pierce, S.J.: ‘the use and abuse of photographic identification in sharks and rays’, J. Fish Biol., 2012, 80, pp. 13611379.
    27. 27)
      • 27. Brooks, K., Rowat, D., Pierce, S.J., et al: ‘Seeing spots: photo-identification as a regional tool for whale shark identification’, West. Indian Ocean J. Mar. Sci., 2010, 9, (2), pp. 185194.
    28. 28)
      • 28. Arzoumanian, Z., Holmberg, J., Norman, B.: ‘An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodontypu’, J. Appl. Ecol., 2005, 42, (6), pp. 9991011.
    29. 29)
      • 29. www.snapshotserengeti.org/ accessed on 10 December, 2015.
    30. 30)
      • 30. Jain, A., Maltoni, D., Maio, D., et al: ‘Biometric systems: technology, design and performance evaluation’ (Springer, 2005).
    31. 31)
      • 31. Jain, A.K., Flynn, P., Ross, A.A.: ‘Handbook of biometrics’ (Springer Science & Business Media, New York, 2007).
    32. 32)
      • 32. Mikolajczyk, K., Schmid, C.: ‘A performance evaluation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 2, pp. 257263.
    33. 33)
      • 33. Hannuna, S.L., Campbell, N.W., Gibson, D.P.: ‘Identifying quadruped gait in wildlife video’. IEEE Int. Conf. Image Processing (ICIP), Genova, Italy, September 2005, vol. 1, pp. 710713.
    34. 34)
      • 34. Reilly, V., Idrees, H., Shah, M.: ‘Detection and tracking of large number of targets in wide area surveillance’. 11th European Conf. on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, pp. 186199.
    35. 35)
      • 35. Wang, Z., Fan, B.: ‘Local intensity order pattern for feature description’. IEEE Int. Conf. on Computer Vision, Barcelona, January 2011, pp. 603610.
    36. 36)
      • 36. Jain, A.K.: ‘Biometric recognition: how do I know who you are?’. Signal Processing and Communications Applications, April 2004, pp. 35, doi: 10.1109/SIU.2004.1338241.
    37. 37)
      • 37. Holmberg, J., Norman, B., Arzoumanian, Z., et al: ‘Estimating population size, structure, and residency time for whale sharks Rhincodontypus through collaborative photo-identification’, Endangered Species Res., 2009, 7, (1) pp. 3953.
    38. 38)
      • 38. Ardovini, A., Cinque, L., Sangineto, E.: ‘Identifying elephant photos by multi-curve matching’, Pattern Recognit.’, 2008, 41, pp. 18671877.
    39. 39)
      • 39. Lahiri, M., Tantipathananandh, C., Warungu, R., et al: ‘Biometric animal databases from field photographs: identification of individual zebra in the wild’. First ACM Int. Conf. on Multimedia Retrieval, Trento, Italy, April 2011, pp. 6:1s66:8.
    40. 40)
      • 40. Loos, A., Pfitzer, M.: ‘Towards automated visual identification of primates using face recognition’. 19th Int. Conf. on Systems, Signals and Image Processing (IWSSIP), Vienna, April 2012, pp. 425428.
    41. 41)
      • 41. Domeier, M.L., Nasby-Lucas, N.: ‘Annual re-sightings of photographically identified white sharks (Carcharodoncarcharias) at an eastern Pacific aggregation site (Guadalupe Island, Mexico)’, Mar. Biol., 2007, 150, pp. 977984.
    42. 42)
      • 42. Ernst, A., Ku blbeck, C.: ‘Fast face detection and species classification of African great apes’. Eigth IEEE Int. Conf. on Advanced Video and Signal-Based Surveillance, Klagenfurt, September 2011, pp. 279284.
    43. 43)
      • 43. Zhang, W., Sun, J., Tang, X.: ‘From tiger to panda: animal head detection’, IEEE Trans. Image Process., 2011, 20, pp. 16961708.
    44. 44)
      • 44. Finn, C., Duyck, J., Hutcheon, A., et al: ‘Relevance feedback in biometric retrieval of animal photographs’, in Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera López, J.A. (EDS.): ‘Pattern recognition’ (Springer International Publishing, 2014), pp. 281290.
    45. 45)
      • 45. Kumar, S., Singh, S.K.: ‘Biometric recognition for pet animal’, J. Softw. Eng. Appl., 2014, 7, (5), pp. 470482.
    46. 46)
      • 46. Volk, T., Gorbey, S., Bhattacharyya, M., et al: ‘RFID technology for continuous monitoring of physiological signals in small animals’, IEEE Trans. Biomed. Eng., 2015, 62, (2), pp. 618626.
    47. 47)
      • 47. Tweed, D., Calway, A.: ‘Tracking many objects using subordinated condensation’. Proc. of the British Machine Vision Conf., October 2002, pp. 283292.
    48. 48)
      • 48. Baranov, A.S., Graml, R., Pirchner, F., et al: ‘Breed differences and intra-breed genetic variability of dermatoglyphic pattern of cattle’, J. Anim. Breed. Genet., 1993, 11, (1-6), pp. 385392.
    49. 49)
      • 49. Noviyanto, A., Arymurthy, A.M.: ‘Beef cattle identification based on muzzle pattern using a matching refinement technique in the SIFT method’, Comput. Electron. Agric., 2013, 99, pp. 7784.
    50. 50)
      • 50. Burghardt, T., Campbell, N.: ‘Generic phase curl localisation for an individual identification of Turing-patterned animals’. Visual Observation and Analysis of Animal and Insect Behavior, 2010, pp. 1721.
    51. 51)
      • 51. Hiby, L., Lovell, P., Patil, N., et al: ‘A tiger cannot change its stripes: using a three-dimensional model to match images of living tigers and tiger skins’, Biol. Lett., 2009, 5, pp. 383386.
    52. 52)
      • 52. Bolger, D.T., Morrison, T.A., Vance, B., et al: ‘A computer-assisted system for photographic mark–recapture analyses’, Methods Ecol. Evol., 2012, 3, pp. 813822.
    53. 53)
      • 53. Ahmed, S., Gaber, T., Tharwat, A., et al: ‘Muzzle-based cattle identification using speed up robust feature approach’. IEEE Int. Conf. on Intelligent Networking and Collaborative Systems (INCOS), Taipei, 2015, pp. 99104.
    54. 54)
      • 54. Petherick, J.C.: ‘Animal welfare issues associated with extensive livestock production: the northern Australian beef cattle industry’, Appl. Anim. Behav. Sci., 2005, 9, (3), pp. 211234.
    55. 55)
      • 55. Mahmoud, H.A., Hadad, H.M.R.E.: ‘Automatic cattle muzzle print classification system using multiclass support vector machine’, Int. J. Image Mining, 2015, 1, pp. 126140.
    56. 56)
      • 56. Papadakis, V.M.: ‘A computer-vision system and methodology for the analysis of fish behaviour’, Aquac. Eng., 2012, 46, pp. 5359.
    57. 57)
      • 57. Larios, N., Deng, H., Zhang, W., et al: ‘Automated insect identification through concatenated histograms of local appearance features’, Mach. Vis. Appl., 2008, 19, pp. 105123.
    58. 58)
      • 58. Sherley, R.B., Burghardt, T., Barham, P.J., et al: ‘Spotting the difference: towards fully automated population monitoring of African penguins Spheniscusdemersus’, Endangered Species Res., 2010, 11, pp. 101111.
    59. 59)
      • 59. Jhuang, H., Garrote, E., Yu, X., et al: ‘Automated home-cage behavioural phenotyping of mice’, Nat. Commun., 2010, 1, p. 68.
    60. 60)
      • 60. Viola, P., Jones, M.J., Snow, D.: ‘Detecting pedestrians using patterns of motion and appearance’. IEEE Int. Conf. on Computer Vision, Nice, France, October 2003, pp. 734741.
    61. 61)
      • 61. Dell, A.I., Bender, J.A., Branson, K., et al: ‘Automated image-based tracking and its application in ecology’, Trends Ecol. Evol., 2014, 29, (7), pp. 417428.
    62. 62)
      • 62. Petrovska-Delacretaz, D., Edwards, A., Chiasson, J., et al: ‘A reference system for animal biometrics: Application to the northern leopard frog’. First Int. Conf. on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, March 2014, pp. 295300.
    63. 63)
      • 63. Viola, P., Jones, M.: ‘Rapid object detection using a boosted cascade of simple features’. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, December 2001, vol. 1, pp. 511518.
    64. 64)
      • 64. Butynski, T.M.: ‘Comparative ecology of blue monkeys (Cercopithecusmitis) in high-and low-density subpopulations’, Ecol. Monogr., 1990, 60, 1, pp. 126.
    65. 65)
      • 65. Morand Ferron, J., Cole, E.F., Quinn, J.L.: ‘Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges’, Biol. Rev., 2015, 91, (2), pp. 367389.
    66. 66)
      • 66. Royle, J.A., Dorazio, R.M.: ‘Hierarchical modeling and inference in ecology: the analysis of data from populations, meta populations and communities’ (Academic Press, 2008).
    67. 67)
      • 67. Chen, S., Ilany, A., White, B.J., et al: ‘Spatial-temporal dynamics of high-resolution animal networks: what can we learn from domestic animals?’, PloS one, 2015, 10, (6), p. e0129253.
    68. 68)
      • 68. De Groeve, J., Van de Weghe, N., Ranc, N., et al: ‘Extracting spatiotemporal patterns in animal trajectories: an ecological application of sequence analysis methods’, Methods Ecol. Evol., 2015, 7, (3), pp. 369379.
    69. 69)
      • 69. Óscar, M., Pep-Luis, M., Sergio, M., et al: ‘APHIS: a new software for photo-matching in ecological studies’, Ecol. Inf., 2015, 27, pp. 6470.
    70. 70)
      • 70. Ravela, S., Duyck, J., Finn, C.: ‘Vision-based biometrics for conservation’. MCPR, 2013, pp. 1019.
    71. 71)
      • 71. Wu, S., Moore, B.E., Shah, M.: ‘Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes’. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, June 2010, pp. 20542060.
    72. 72)
      • 72. http://www.whaleshark.org.au/photo-id-library/ accessed on 20 December 2015.
    73. 73)
      • 73. Gaston, K.J., O'Neill, M.A.: ‘Automated species identification: why not?’, Philos. Trans. R. Soc. Lond. B, 2004, 359, pp. 655667.
    74. 74)
      • 74. Burghardt, T., Calic, J.: ‘Real-time face detection and tracking of animals’. Eigth IEEE Seminar on Neural Network Applications in Electrical Engineering, Belgrade, Serbia & Montenegro, September 2006, pp. 2732.
    75. 75)
      • 75. Baig, A., Bouridane, A., Kurugollu, F., et al: ‘Cascaded multimodal biometric recognition framework’, IET Biometrics, 2014, 3, (1), pp. 1628.
    76. 76)
      • 76. Hassaballah, M., Aly, S.: ‘Face recognition: challenges, achievements and future directions’, IET Comput. Vis., 2015, 9, (4), pp. 614626.
    77. 77)
      • 77. Johnston, A.M., Edwards, D.S.: ‘Welfare implications of identification of cattle by ear tags’, Veterinary Rec., 1996, 138, (25), pp. 612614.
    78. 78)
      • 78. Pennington, J.A.: ‘Tattooing of Cattle and Goats, University of Arkansas’, United States Department of Agriculture, and County Governments Cooperating, 2012.
    79. 79)
      • 79. Awad, A.I., Zawbaa, H.M., Mahmoud, H.A., et al: ‘A robust cattle identification scheme using muzzle print images’. Federated Conf. on IEEE Computer Science and Information Systems (FedCSIS), Kraków, Poland, September 2013, pp. 529534.
    80. 80)
      • 80. Wardrope, D.D.: ‘Problems [suppurating wounds] with the use of ear tags in cattle [Correspondence]’, Veterinary Rec., 1995, 137, (26), p. 675.
    81. 81)
      • 81. Kumar, S., Tiwari, S., Singh, S.K.: ‘Face recognition of cattle: can it be done?’, Proc. Nat. Acad. Sci., India A, Phys. Sci., 2016, 86, (2), pp. 137148, pp. 112, doi: 10.1007/s40010-016-0264-2.
    82. 82)
      • 82. Minagawa, H., Fujimura, T., Ichiyanagi, M., et al: ‘Identification of beef cattle by analysing images of their muzzle patterns lifted on paper’, Publ. Jpn. Soc. Agric. Inform., 2002, 8, pp. 596600.
    83. 83)
      • 83. Noviyanto, A., Arymurthy, A.M.: ‘Automatic cattle identification based on muzzle photo using speed-up robust features approach’. Proc. of 3rd European Conf. of Computer Science (ECCS), 2012, vol. 110, p. 114.
    84. 84)
      • 84. Mishra, S., Tomer, O.S., Kalm, E.: ‘Muzzle dermatoglyphics: a new method to s: a new method to identify bovines’, Asian Livestock, 1995, pp. 9196.
    85. 85)
      • 85. Kumar, S., Singh, S.K.: ‘Feature selection and recognition of muzzle pattern of cattle by using hybrid chaos BFO and PSO algorithms’, in Azar, A.T., Vaidyanathan, S. (EDS.): ‘Advances in chaos theory and intelligent control’, Studies in Fuzziness and Soft Computing (Springer-Verlag, Germany, 2015).
    86. 86)
      • 86. Kumar, S., Singh, S.K., Dutta, T., et al: ‘Poster: a real-time cattle recognition system using wireless multimedia networks’. Proc. of the 14th Annual Int. Conf. on Mobile Systems, Applications, and Services Companion, 2016, pp. 4848.
    87. 87)
      • 87. Kumar, S., Singh, S.K.: ‘Feature selection and recognition of face by using hybrid chaotic PSO-BFO and appearance-based recognition algorithms’, Int. J. Nat. Comput. Res. (IJNCR), 2015, 5, (3), pp. 2653.
    88. 88)
      • 88. Kumar, S., Singh, S.K.: ‘Automatic identification of cattle using muzzle point pattern: a hybrid feature extraction and classification paradigm’, Multimedia Tools and Applications, Springer, 2016, doi: 10.1007/s11042-016-4181-9.
    89. 89)
      • 89. Kumar, S., Singh, S.K., Shrikant, R.S., et al: ‘Real-time cattle recognition using animal biometrics’, J. Real-Time Image Process., 2016, pp. 122, doi: 10.1007/s11554-016-0645-4.
    90. 90)
      • 90. Kumar, S., Singh, S.K.: ‘Hybrid BFO and PSO swarm intelligence approach for biometric feature optimization’, Int. J. Swarm Intell. Res. (IJSIR), 2016, 7, (2), pp. 3662.
    91. 91)
      • 91. Kumar, S., Singh, S.K., Datta, T., et al: ‘A fast cattle recognition system using smart devices’. Proc. of the 2016 ACM on Multimedia Conf. 2016, 2016, pp. 742743.
    92. 92)
      • 92. Barry, B., Gonzales-Barron, U.A., McDonnell, K., et al: ‘Using muzzle pattern recognition as a biometric approach for cattle identification’, Am. Soc. Agric. Biol. Eng., 2007, 50, (3), pp. 10731080.
    93. 93)
      • 93. Kim, H.T., Ikeda, Y., Choi, H.L.: ‘The identification of Japanese black cattle by their faces’, Training, 2005, 1, p. e11e12.
    94. 94)
      • 94. Cheng, C., Li, J.: ‘Cattle face recognition using local binary pattern descriptor’. IEEE, Annual Summit and Conf. on Signal and Information Processing Association (APSIPA), Asia-Pacific, Kaohsiung, November 2013, pp. 14, doi: 10.1109/APSIPA.2013.6694369.
    95. 95)
      • 95. Thaxter, C.B., Ross Smith, V.H., Clark, J.A., et al: ‘Contrasting effects of GPS device and harness attachment on adult survival of Lesser Black-backed Gulls Larusfuscus and Great SkuasStercorariusskua’. IBIS, 2016.
    96. 96)
      • 96. Ahumada, J.A., Silva, C.E., Gajapersad, K., et al: ‘Community structure and diversity of tropical forest mammals: data from a global camera trap network’, Philos. Trans. R. Soc. Lond. B, 2011, 366, pp. 27032711.
    97. 97)
      • 97. Buckland, S.T., Burt, M.L., Rexstad, E.A., et al: ‘Aerial surveys of seabirds: the advent of digital methods’, J. Appl. Ecol., 2012, 49, pp. 960967.
    98. 98)
      • 98. Watts, A.C., Perry, J.H., Smith, S.E., et al: ‘Small unmanned aircraft systems for low altitude aerial surveys’, J. Wildl. Manage., 2010, 74, (7), pp. 16141619.
    99. 99)
      • 99. Damm, P.E., Grand, J.B., Barnett, S.W.: ‘Variation in detection among passive infrared triggered-cameras used in wildlife research’, Proc. Annu. Conf. Southeast Assoc. Fish Wildl. Agencies, 2010, 64, pp. 125130.
    100. 100)
      • 100. Saraux, C., Le Bohec, C., Durant, J.M., et al: ‘Reliability of flipper-banded penguins as indicators of climate change’, Nature, 2011, 469, pp. 203206.
    101. 101)
      • 101. Tharwat, A., Gaber, T., Hassanien, A.E.: ‘Cattle identification based on muzzle images using Gabor features and SVM classifier’, in Hassanien, A.E., Tolba, M.F., Taher, A.A. (EDS.): ‘Advanced machine learning technologies and applicationsAMLTA (Springer, Cham2014), 488, pp. 236247, Communications in Computer and Information Science.
    102. 102)
      • 102. Petersen, W.: ‘The identification of the bovine by means of nose-prints’, J. Dairy Sci., 1922, 5, (1), pp. 249258.
    103. 103)
      • 103. Hochachka, W.M., Fink, D., Hutchinson, R.A., et al: ‘Data-intensive science applied to broad scale citizen science’, Trends Ecol. Evol., 2012, 27, pp. 130137.
    104. 104)
      • 104. Kranner, I., Bischof, H.: ‘Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in giant honey bees’, Front. Zool., 2011, 8, (3), p. 3, doi: 10.1186/1742-9994-8-3.
    105. 105)
      • 105. Yang, J.: ‘The thin plate spline robust point matching (TPS-RPM) algorithm: a revisit’, Pattern Recognit. Lett., 2011, 32, pp. 910918.
    106. 106)
      • 106. Clutton-Brock, T.H., Sheldon, B.C.: ‘Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology’, Trends Ecol. Evol., 2010, 25, pp. 562573.
    107. 107)
      • 107. Kappeler, P., Watts, D.: ‘Long-term field studies of primates’ (Springer, 2011).
    108. 108)
      • 108. Magurran, A.E., Baillie, S.R., Buckland, S.T., et al: ‘Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time’, Trends Ecol. Evol., 2010, 25, pp. 574582.
    109. 109)
      • 109. Houle, D., Govindaraju, D.R., Omholt, S.: ‘Phenomics: the next challenge’, Nat. Rev. Genet., 2010, 11, pp. 855866.
    110. 110)
      • 110. Sandbrook, C.: ‘The social implications of using drones for biodiversity conservation’, Ambio, 2015, 44, (4), pp. 636647.
    111. 111)
      • 111. http://sourceforge.net/projects/cheetahdatabase accessed on 27 December 2015, time 11: 45 am.
    112. 112)
      • 112. Hsieh, H.M., Huang, L.H., Tsai, L.C., et al: ‘Species identification of rhinoceros horns using the cytochrome b gene’, Forensic Sci. Int., 2003, 136, (1), pp. 111.
    113. 113)
      • 113. Hochachka, W.M., Fink, D., Hutchinson, R.A., et al: ‘Data-intensive science applied to broad-scale citizen science’, Trends Ecol. Evol., 2015, 27, 2, pp. 130137.
    114. 114)
      • 114. http://www.ecoceanusa.org/shepherd accessed on 30 December 2015, time 10: 42 am.
    115. 115)
      • 115. Walters, C.L., Freeman, R., Collen, A., et al: ‘A continental-scale tool for acoustic identification of European bats’, J. Appl. Ecol., 2012, 49, pp. 10641074.
    116. 116)
      • 116. Town, C., Marshall, A., Sethasathien, N.: ‘Manta Matcher: automated photographic identification of manta rays using keypoint features’, Ecol. Evol., 2013, 3, (7), pp. 19021914.
    117. 117)
      • 117. Heblich, S., Lameli, A., Riener, G.: ‘Correction: the effect of perceived regional accents on individual economic behavior: a lab experiment on linguistic performance, cognitive ratings and economic decisions’, PloS One, 2015, 10, p. 5.
    118. 118)
      • 118. http://sharkidnetwork.com/about/ accessed on 27 December 2015, time 11: 45 am.
    119. 119)
      • 119. Jones, K.E., Bielby, J., Cardillo, M., et al: ‘PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090-184’, Ecology, 2009, 90, (9), pp. 26482648.
    120. 120)
      • 120. Van Parijs, S.M., Clark, C.W., Sousa-Lima, R.S., et al: ‘Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales’, Mar. Ecol. Prog. Ser., 2009, 395, pp. 2136.
    121. 121)
      • 121. Crall, J.D., Gravish, N., Mountcastle, A.M., et al: ‘BEE tag: a low-cost, image-based tracking system for the study of animal behavior and locomotion’, PloS One, 2015, 10, (9), p. e0136487.
    122. 122)
      • 122. http://www.csiro.au/Organisation-Structure/Divisions/Ecosystem-Sciences/ANWC-Sound-Archive, accessed on 30 December 2015, time 10: 42 am.
    123. 123)
      • 123. http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/BEHAVIOR/, accessed on 07 September 2016, 20. 15 pm.
    124. 124)
      • 124. Oshizaki, J., Pollock, K.H., Brownie, C., et al: ‘Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks’, Ecology, 2009, 90, pp. 39.
    125. 125)
      • 125. Morrison, T.A., Yoshizaki, J., Nichols, J.D., et al: ‘Estimating survival in photographic capture–recapture studies: overcoming misidentification error. Methods’, Ecol. Evol., 2011, 2, pp. 454463.
    126. 126)
      • 126. Constantine, R., Jackson, J.A., Steel, D., et al: ‘Abundance of humpback whales in oceania using photo-identification and microsatellite genotyping’, Mar. Ecol. Prog. Ser., 2012, 453, pp. 249261.
    127. 127)
      • 127. Guo, S., Qiang, M., Luan, X., et al: ‘The application of the Internet of Things to animal ecology’, Integr. Zool., 2015, 10, (6), pp. 572578.
    128. 128)
      • 128. Zhang, W.: ‘Cat head detection: how to effectively exploit shape and texture features’, Lect. Notes Comput. Sci., 2008, 5305, pp. 802816.
    129. 129)
      • 129. Sagonas, C., Panagakis, Y., Zafeiriou, S., et al: ‘Robust statistical frontalization of human and animal faces’, Int. J. Comput. Vis., 2016, pp. 122, doi: 10.1007/s11263-016-0920-7.
    130. 130)
      • 130. Chen, Y.-C., Hidayati, S.C., Cheng, W.-H., et al: ‘Locality constrained sparse representation for cat recognition’. 22nd Int. Conf., MMM 2016, Miami, FL, USA, January 2016, pp. 140151.
    131. 131)
      • 131. Jarraya, I., Ouarda, W., Alimi, A.M.: ‘A preliminary investigation on horses recognition using facial texture features’. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), Kowloon, October 2015, pp. 28032808.
    132. 132)
      • 132. Galimberti, F., Sanvito, S.: ‘Environmental research at Sea Lion Island’. Falkland Islands Field work report 2015/2016, 2016.
    133. 133)
      • 133. Liu, J., Kanazawa, A., Jacobs, D., et al: ‘Dog breed classification using part localization’. 12th European Conf. on Computer Vision, Florence, Italy, 7–13 October 2012, pp. 172185.
    134. 134)
      • 134. Chen, J., Wen, Q., Qu, W., et al: ‘Panda facial region detection based on topology modelling’. 5th Int. Congress on Image and Signal Processing (CISP), Chongqing, Sichuan, China, October 2012, pp. 911915.
    135. 135)
      • 135. Qi, Y., Cinar, G.T., Souza, V.M.A., et al: ‘Effective insect recognition using a stacked autoencoder with maximum correntropy criterion’. IEEE Int. Joint Conf. on Neural Networks (IJCNN), Killarney, July 2015, pp. 17.
    136. 136)
      • 136. Carlos, J., Reyesvera, U., Possani-Espinosa, A.: ‘Scorpions: Classification of poisonous species using shape features’. Int. Conf. on Electronics Communications and Computers (CONIELECOMP), Cholula, February 2016, pp. 125129.
    137. 137)
      • 137. Silva, D.F., Batista, G.E.D.A.P.A.: ‘Signal classification by similarity and feature extraction with application in automatic insect identification’. Congresso da Sociedade Brasileira de Computação, XXXV; Concurso de Teses e Dissertações, XXVIII, Universidade Federal de Pernambuco-UFPE, 2015.
    138. 138)
      • 138. Lu, A., Hou, X., Liu, C.L., et al: ‘Insect species recognition using discriminative local soft coding’. 21st Int. Conf. on Pattern Recognition (ICPR), Tsukuba, November 2012, pp. 12211224.
    139. 139)
      • 139. Van Horn, G., Branson, S., Farrell, R., et al: ‘Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection’. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, June 2015, pp. 595604.
    140. 140)
      • 140. Takeki, A., Trinh, T.T., Yoshihashi, R., et al: ‘Detection of small birds in large images by combining a deep detector with semantic segmentation’. IEEE Int. Conf. Image Processing, Phoenix, AZ, USA, September 2016, pp. 39773981.
    141. 141)
      • 141. Li, W., Song, D.: ‘Automatic bird species filtering using a multimodal approach’, IEEE Trans. Autom. Sci. Eng., 2015, 12, pp. 553564.
    142. 142)
      • 142. Kiapour, M.H., Jagadeesh, W., Di, V., et al: ‘Mine the fine: Fine-grained fragment discovery’. IEEE Int. Conf. on Image Processing (ICIP), Quebec City, QC, September 2015, pp. 35553559.
    143. 143)
      • 143. Atanbori, J., Duan, W., Murray, J., et al: ‘Automatic classification of flying bird species using computer vision techniques’, Pattern Recognit. Lett., 2016, 81, (1), pp. 5362.
    144. 144)
      • 144. Wilson, D.J., Lyver, P.O.B., Greene, T.C., et al: ‘South Polar Skua breeding populations in the Ross Sea assessed from demonstrated relationship with Adélie Penguin numbers’, Polar Biol., pp. 116, doi:10.1007/s00300-016-1980-4.
    145. 145)
      • 145. Krüger, B., Yasin, H., Zsoldos, R., et al: ‘Retrieval, recognition and reconstruction of quadruped motions’. Int. Conf. on Computer Graphics Theory and Applications (GRAPP), Lisbon, Portugal, January 2014, pp. 18.
    146. 146)
      • 146. Song, D., Qin, N., Xu, Y., et al: ‘System and algorithms for an autonomous observatory assisting the search for the Ivory-Billed Woodpecker’. IEEE Int. Conf. on Automation Science and Engineering, Arlington, VA, 2008, pp. 200205.
    147. 147)
      • 147. Kelly, M.J.: ‘Computer-aided photograph matching in studies using individual identification: an example from Serengeti cheetahs’, J. Mammal., 2001, 82, pp. 440449.
    148. 148)
      • 148. Chelysheva, E.: ‘A new approach to cheetah identification’, CAT NEWS, IUCN/CSG 41, 2004, pp. 2729.
    149. 149)
      • 149. Beugeling, T., Branzan-Albu, A.: ‘Computer vision-based identification of individual turtles using characteristic patterns of their plastrons’. Canadian Conf. on Computer and Robot Vision (CRV), Montreal, QC, 2014, pp. 203210.
    150. 150)
      • 150. Baboo, S.S., Vigneswari, A.R.J.: ‘Identification of olive Ridley turtle using feature extraction’. Int. Conf. on Intelligent Computing Applications (ICICA), Coimbatore, October 2014, pp. 6972.
    151. 151)
      • 151. Li, L., Hong, J.: ‘Identification of fish species based on image processing and statistical analysis research’. IEEE Int. Conf. on Mechatronics and Automation, Tianjin, August 2014, pp. 11551160.
    152. 152)
      • 152. Saitoh, T., Shibata, T., Miyazono, T.: ‘Image-based fish recognition’. Seventh Int. Conf. of Soft Computing and Pattern Recognition (SoCPaR), Fukuoka, Japan, August 2015, pp. 260263.
    153. 153)
      • 153. Chuang, M.C., Hwang, J.N., Williams, K.: ‘Supervised and unsupervised feature extraction methods for underwater fish species recognition’. Computer Vision for Analysis of Underwater Imagery (CVAUI), 2014 ICPR Workshop on, Stockholm, August 2014, pp. 3340.
    154. 154)
      • 154. Chuang, M.C., Hwang, J.N., Williams, K.: ‘A feature learning and object recognition framework for underwater fish images’, IEEE Trans. Image Process., 2016, 25, pp. 18621872.
    155. 155)
      • 155. Ashour, H., Sasi, S.: ‘Recognition of stonefish from underwater video’. Int. Conf. on Advances in Computing Communications and Informatics (ICACCI), Kochi, August 2015, pp. 10311036.
    156. 156)
      • 156. Freytag, A., Rodner, E., Simon, M., et al: ‘Chimpanzee faces in the wild: log-Euclidean CNNs for predicting identities and attributes of primates’. 38th German Conf., GCPR, Hannover, Germany, September 2016, pp. 1215.
    157. 157)
      • 157. Marshall, A.D., Pierce, S.J., Bennett, M.B.: ‘Morphological measurements of manta rays (Manta birostris) with a description of a foetus from the east coast of Southern Africa’, Zootaxa, 2008, 1717, pp. 2430.
    158. 158)
      • 158. Martin-Smith, K.M.: ‘Photo-identification of individual weedy sea dragons Phyllopteryxtaeniolatus and its application in estimating population dynamics’, J. Fish Biol., 2011, 78, pp. 17571768.
    159. 159)
      • 159. Macrì, S., Mainetti, L., Patrono, L., et al: ‘A tracking system for laboratory mice to support medical researchers in behavioral analysis’. 37th Annual IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Milan, August 2015, pp. 49464949.
    160. 160)
      • 160. Carreno, M.I., López de Ipiña, K., Beitia, B.: ‘First approach to the analysis of spontaneous activity of mice based on Permutation Entropy’. Fourth IEEE Int. Work Conf. on Bioinspired Intelligence (IWOBI), San Sebastian, June 2015, pp. 197204.
    161. 161)
      • 161. Hamid, N.A., Safei, S., Satar, S.D.M., et al: ‘Mouse movement behavioral biometric systems’. Int. Conf. on User Science and Engineering (i-USEr), Shah Alam, Selangor, December 2011, pp. 206211.
    162. 162)
      • 162. Sieges, M.L., Smolinsky, J.A., Baldwin, M.J., et al: ‘Assessment of bird response to the migratory bird habitat initiative using weather-surveillance radar’, Southeast. Nat., 2014, 13, (1), pp. G36G65.
    163. 163)
      • 163. Stern, U., He, R., Yang, C.H.: ‘Analyzing animal behavior via classifying each video frame using convolutional neural networks’, Scientific reports, 5, Article number: 14351 2015, doi: 10.1038/srep14351.
    164. 164)
      • 164. Fan, J., Jiang, N., Wu, Y.: ‘Automatic video-based analysis of animal behaviors’. IEEE Int. Conf. Image Processing, Hong Kong, September 2010, pp. 15131516.
    165. 165)
      • 165. Mayya, M., Doignon, C.: ‘Visual tracking of small animals based on real-time Level Set Method with fast infra-red thermographic imaging’. IEEE Int. Symp. on Robotic and Sensors Environments (ROSE), Montreal, QC, September 2011, pp. 6064.
    166. 166)
      • 166. Turk, M.A., Pentland, A.P.: ‘Face recognition using eigenfaces’. IEEE Computer Vision and Pattern Recognition, Shanghai, March 2011, pp. 586591.
    167. 167)
      • 167. Etemad, K., Chellappa, R.: ‘Discriminant analysis for recognition of human face images’, JOSA-A, 1997, 14, (8), pp. 17241733.
    168. 168)
      • 168. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: ‘Face recognition by independent component analysis’, IEEE Trans. Neural Netw., 2002, 3, (6), pp. 14501464.
    169. 169)
      • 169. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 971987.
    170. 170)
      • 170. Ahonen, T., Hadid, A., Pietikainen, M.: ‘Face description with local binary patterns: application to face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, pp. 20372041.
    171. 171)
      • 171. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    172. 172)
      • 172. Faraji, M.R., Qi, X.: ‘Face recognition under illumination variations based on eight local directional patterns’, IET Biometrics, 2015, 4, (1), pp. 1017.
    173. 173)
      • 173. Karu, K., Jain, A.K.: ‘Fingerprint classification’, Pattern Recogn., 1996, 29, (3), pp. 389404.
    174. 174)
      • 174. Vlad, M.A.R.I.A., Parvulet, R.A., Vlad, M.S.A.: ‘Survey of livestock identification systems’. Proc. of 13th WSEAS Int. Conf. on Automation and Information (ICAI), June 2012, pp. 165170.
    175. 175)
      • 175. Kumar, S., Tiwari, S., Singh, S.K.: ‘Face recognition for cattle’. Proc. of 3rd IEEE Int. Conf. on Image Information Processing (ICIIP), Waknaghat, 2015, pp. 6572, doi: 10.1109/ICIIP.2015.7414742.
    176. 176)
      • 176. Collins, L.M.: ‘Non-intrusive tracking of commercial broiler chickens in situ at different stocking densities’, Appl. Anim. Behav. Sci., 2008, 112, pp. 94105.
    177. 177)
      • 177. Piczak, K.: ‘Recognizing bird species in audio recordings using deep convolutional neural networks’. Int. Conf. CLEF Working Notes, 2016, pp. 273288.
    178. 178)
      • 178. Jain, S., Laxmi, V.: ‘Analysis and design of neural network based image retrieval system for identification of species’. Int. Conf. on Computation of Power, Energy Information and Communication (ICCPEIC), Melmaruvathur, Chennai, India, March 2016, pp. 188192.
    179. 179)
      • 179. Bressane Roveda, J.A.F., Martins, A.C.G.: ‘Pattern recognition in trunk images based on co-occurrence descriptors: A proposal applied to tree species identification’. Latin America Congress on Computational Intelligence (LA-CCI), Curitiba, November 2015, pp. 16.
    180. 180)
      • 180. Reyes, A.K., Camargo, J.E.: ‘Visualization of audio records for automatic bird species identification’. 20th Symp. on Signal Processing, Images and Computer Vision (STSIVA), Bogota, September 2015, pp. 16.
    181. 181)
      • 181. Kamińska, D., Gmerek, A.: ‘Automatic identification of bird species: A comparison between kNN and SOM classifiers’. Joint Conf. on New Trends in Audio & Video and Signal Processing: Algorithms, Architectures, Arrangements and Applications (NTAV/SPA), Lodz, Poland, August 2012, pp. 7782.
    182. 182)
      • 182. Rossi, F., Benso, A., Di Carlo, S., et al: ‘A mobile App to detect fish falsification through image processing and machine learning techniques’. IEEE Int. Conf. on Automation Quality and Testing Robotics (AQTR), Cluj-Napoca, May 2016, pp. 16.
    183. 183)
      • 183. Jill, M.L., Buler, J.J., Frank, R.M.: ‘Geographic position and landscape composition explain regional patterns of migrating landbird distributions during spring stopover along the northern coast of the Gulf of Mexico’, Landsc. Ecol., 2016, 31, (8), pp. 16971709.
    184. 184)
      • 184. Tashakkori, R., Ghadiri, A.: ‘Image processing for honey bee hive health monitoring’. SoutheastCon 2015, Fort Lauderdale, FL, April 2015, pp. 17.
    185. 185)
      • 185. Beyan, C., Fisher, R.B.: ‘Detecting abnormal fish trajectories using clustered and labeled data’. 20th IEEE Int. Conf. Image Processing, Melbourne, VIC, September 2013, pp. 14761480.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0017
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address