http://iet.metastore.ingenta.com
1887

Fingerprint liveness detection using local texture features

Fingerprint liveness detection using local texture features

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of fingerprint liveness detection has received an increasing attention in the last decade, as attested by the organisation of three editions of an international competition, named LivDet, dedicated to this challenge. LivDet editions and other works in the literature showed that the performance of current fingerprint liveness detection algorithms is not good enough to allow empowering a fingerprint verification system with a module aimed to distinguish alive from fake fingerprint images. However, recent developments have shown that texture-based features can provide promising solutions to this problem. In this study, a novel fingerprint liveness descriptor named binarised statistical image features (BSIFs) is adopted. Similarly to local binary pattern and local phase quantisation-based representations, BSIF encodes the local fingerprint texture into a feature vector by using a set of filters that, unlike other methods, are learnt from natural images. Extensive experiments with over 40,000 live and fake fingerprint images show that the authors’ proposed method outperforms most of the state-of-the-art algorithms, allowing a step ahead to the real integration of fingerprint liveness detectors into verification systems.

References

    1. 1)
      • 1. Coli, P., Marcialis, G.L., Roli, F.: ‘Vitality detection from fingerprint images: a critical survey’. IEEE/IAPR Second Int. Conf. on Biometrics (ICB 2007), Seoul, Korea, 2007b (LNCS, 4642), pp. 722731.
    2. 2)
      • 2. Nikam, S., Aggarwal, S.: ‘Wavelet energy signature and GLCM features-based fingerprint anti-spoofing’. IEEE Int. Conf. on Wavelet Analysis and Pattern Recognition, 2008c.
    3. 3)
      • 3. Coli, P., Marcialis, G.L., Roli, F.: ‘Power spectrum-based fingerprint vitality detection’. IEEE Int. Work. on Automatic Identification Advanced Technologies AutoID 2007, 2007a, pp. 169173.
    4. 4)
      • 4. Marcialis, G.L., Roli, F., Tidu, A.: ‘Analysis of fingerprint pores for vitality detection’. Proc. of 20th IEEE/IAPR Int. Conf. on Pattern Recognition (ICPR2010), Istanbul, Turkey, 2010, pp. 12891292.
    5. 5)
      • 5. Marcialis, G.L., Coli, P., Roli, F.: ‘Fingerprint liveness detection based on fake finger characteristics’, Int. J. Digit. Crime Forensics, 2012a, 4, pp. 119.
    6. 6)
      • 6. Marcialis, G.L., Lewicke, A., Tan, B., et al: ‘First international fingerprint liveness detection competition – LivDet 2009’. Image Analysis and Processing – ICIAP 2009, Berlin Heidelberg, 2009, pp. 1223.
    7. 7)
      • 7. Yambay, D., Ghiani, L., Denti, P., et al: ‘LivDet 2011 – fingerprint liveness detection competition 2011’. Fifth IAPR/IEEE Int. Conf. on Biometrics, New Delhi, India, 2012, pp. 208215.
    8. 8)
      • 8. Ghiani, L., Yambay, D., Mura, V., et al: ‘LivDet 2013 fingerprint liveness detection competition 2013’. 2013 Int. Conf. on Biometrics (ICB), 2013, pp. 16.
    9. 9)
      • 9. Ghiani, L., Denti, P., Marcialis, G.L.: ‘Experimental results on fingerprint liveness detection’. AMDO'12 – Seventh Int. Conf. on Articulated Motion and Deformable Objects, Mallorca, Spain, 2012, pp. 210218.
    10. 10)
      • 10. Ghiani, L., Marcialis, G.L., Roli, F.: ‘Fingerprint liveness detection by local phase quantization’. 21st Int. Conf. on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 2012, pp. 537540.
    11. 11)
      • 11. Marcialis, G.L., Ghiani, L., Roli, F.: ‘Experimental results on the feature-level fusion of multiple fingerprint liveness detection algorithms’. 14th ACM Workshop on Multimedia and Security (MMSEC 2012), Coventry, UK, 6–7 September 2012, , pp. 157164.
    12. 12)
      • 12. Jia, X., Yang, X., Cao, K., et al: ‘Multi-scale local binary pattern with filters for spoof fingerprint detection’, Inf. Sci.’, New Sens. Process. Technol. Hand-based Biometrics Authentication, 2014, 268, pp. 91102.
    13. 13)
      • 13. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘Fingerprint liveness detection based on Weber local image descriptor’. 2013 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), 2013, pp. 4650.
    14. 14)
      • 14. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘Local contrast phase descriptor for fingerprint liveness detection’, Pattern Recognit., 2015, 48, pp. 10501058.
    15. 15)
      • 15. Abhyankar, A., Schuckers, S.: ‘Fingerprint liveness detection using local ridge frequencies and multiresolution texture analysis techniques’. 2006 IEEE Int. Conf. on Image Processing, 2006, pp. 321324.
    16. 16)
      • 16. Parthasaradhi, S., Derakhshani, R., Hornak, L., et al: ‘Time-series detection of perspiration as a liveness test in fingerprint devices’, IEEE Trans. Syst. Man Cybern. Appl. Rev. , 2005, 35, pp. 335343.
    17. 17)
      • 17. Antonelli, A., Cappelli, R., Maio, D., et al: ‘Fake finger detection by skin distortion analysis’, IEEE Trans. Inf. Forensics Sec., 2006, 1, pp. 360373.
    18. 18)
      • 18. Marasco, E., Ross, A.: ‘A survey on anti-spoofing schemes for fingerprint recognition systems’, ACM Comput. Surv., 2014, 47, p. 36.
    19. 19)
      • 19. Nogueira, R.F., de Alencar Lotufo, R., Machado, R.C.: ‘Fingerprint liveness detection using convolutional neural networks’, IEEE Trans. Inf. Forensics Sec., 2016, 11, pp. 12061213.
    20. 20)
      • 20. Wang, C., Li, K., Wu, Z., et al: ‘A DCNN based fingerprint liveness detection algorithm with voting strategy’, In Yang, J., Yang, J., Sun, Z., et al (EDs.): ‘Biometric recognition’ (Springer, 2015), pp. 241249.
    21. 21)
      • 21. Kannala, J., Rahtu, E.: ‘BSIF: binarized statistical image features’. Proc. 21st Int. Conf. on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 2012, pp. 13631366.
    22. 22)
      • 22. Ghiani, L., Hadid, A., Marcialis, G.L., et al: ‘Fingerprint liveness detection using binarized statistical image features’. IEEE Sixth Int. Conf. on Biometrics: Theory, Applications, and Systems (BTAS 2013), Washington DC, USA, 2013a.
    23. 23)
      • 23. Marasco, E., Sansone, C.: ‘Combining perspiration- and morphology-based static features for fingerprint liveness detection’, Pattern Recognit. Lett., 2012, 33, pp. 11481156.
    24. 24)
      • 24. Sousedik, C., Busch, C.: ‘Presentation attack detection methods for fingerprint recognition systems: a survey’, IET Biometrics, 2014, 3, 4, p. 219233.
    25. 25)
      • 25. Gragnaniello, D., Poggi, G., Sansone, C., et al: ‘An investigation of local descriptors for biometric spoofing detection’, IEEE Trans. Inf. Forensics Sec., 2015a, 10, pp. 849863.
    26. 26)
      • 26. Ojala, T., Pietikäinen, M., Mäenpää, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 971987.
    27. 27)
      • 27. Ojansivu, V., Heikkilä, J.: ‘Blur insensitive texture classification using local phase quantization’. Proc. Image and Signal Processing (ICISP 2008), Cherbourg-Octeville, France, 2008, vol. 5099, pp. 236243.
    28. 28)
      • 28. Galbally, J., Alonso-Fernandez, F., Fierrez, J., et al: ‘A high performance fingerprint liveness detection method based on quality related features’, Future Generation Computer Systems, 2012, 28, pp. 311321.
    29. 29)
      • 29. Nikam, S., Aggarwal, S.: ‘Texture and wavelet-based spoof fingerprint detection for fingerprint biometric systems’, First Int. Conf. on Emerging Trends in Engineering and Technology, 2008. ICETET'08, 2008, pp. 675680.
    30. 30)
      • 30. Tan, B., Schuckers, S.: ‘Liveness detection for fingerprint scanners based on the statistics of wavelet signal processing’. Conf. on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06, 2006, p. 26.
    31. 31)
      • 31. Tan, B., Schuckers, S.: ‘New approach for liveness detection in fingerprint scanners based on valley noise analysis’, J. Electron. Imaging, 2008, 17, (1), pp. 12891292.
    32. 32)
      • 32. Nikam, S., Aggarwal, S.: ‘Fingerprint liveness detection using curvelet energy and co-occurrence signatures’. Fifth Int. Conf. on Computer Graphics, Imaging and Visualization 2008, 2008, pp. 217222.
    33. 33)
      • 33. Ahonen, T., Hadid, A., Pietikäinen, M.: ‘Face description with local binary patterns: application to face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, pp. 20372041.
    34. 34)
      • 34. Pietikäinen, M., Hadid, A., Zhao, G., et al: ‘Computer vision using local binary patterns’ (Springer, 2011).
    35. 35)
      • 35. Hyvarinen, A., Oja, E.: ‘Independent component analysis: algorithms and applications’, Neural Netw., 2000, 13, pp. 411430.
    36. 36)
      • 36. Chang, C.-C., Lin, C.-J., LIBSVM: ‘A library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (27), pp. 127. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
    37. 37)
      • 37. Ghiani, L., Yambay, D., Mura, V., et al: ‘Review of the fingerprint liveness detection (LivDet) competition series: 2009 to 2015, Image Vis. Comput., 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2016.0007
Loading

Related content

content/journals/10.1049/iet-bmt.2016.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address