Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multimodal 2D–3D face recognition using local descriptors: pyramidal shape map and structural context

In this study, the authors propose a local descriptor based multimodal approach to improve face recognition performance. Pre-processing is done to smooth, resample, and register data. The resampled three-dimensional (3D) face data are applied to extract novel descriptors including pyramidal shape index, pyramidal curvedness, pyramidal mean, and Gaussian curvatures. Proposed pyramidal shape maps are extracted at each level of the Gaussian pyramid on each point of the 3D data to have 2D matrices as representatives of 3D geometry information. A local descriptor structural context histogram, which represents the structure of the image using scale invariant feature transform, is calculated on pyramidal shape map descriptors and texture image to find matched keypoints in 3D and 2D modality, respectively. Score-level fusion by means of sum rule is employed to get a final matching score. Experimental results on the Face Recognition Grand Challenge (FRGC v2) database illustrate verification rates of 99 and 98.65% at 0.1% false acceptance rate for all versus all and ROC III experiments, respectively. On Bosphorus database, verification rate of 95.8% for neutral versus all experiment has been achieved.

References

    1. 1)
      • 31. Li, H., Huang, D., Morvan, J.M., et al: ‘Towards 3d face recognition in the real: a registration-free approach using fine-grained matching of 3d keypoint descriptors’, Int. J. Comput. Vis., 2015, 113, (2), pp. 128142.
    2. 2)
      • 1. Zhao, W., Chellappa, R., Phillips, P.J., et al: ‘Face recognition: a literature survey’, ACM Comput. Surv., 2003, 35, (4), pp. 399458.
    3. 3)
      • 26. Alyuz, N., Gokberk, B., Akarun, L.: ‘Regional registration for expression resistant 3-D face recognition’, IEEE Trans. Inf. Forensics Sec., 2010, 5, (3), pp. 425440.
    4. 4)
      • 10. Elaiwat, S., Bennamoun, M., Boussaid, F., et al: ‘A curvelet-based approach for textured 3D face recognition’, Pattern Recogn., 2015, 48, (4), pp. 12351246.
    5. 5)
      • 11. Mian, A., Bennamoun, M., Owens, R.: ‘Keypoint detection and local feature matching for textured 3d face recognition’, Int. J. Comput. Vis., 2008, 79, (1), pp. 112.
    6. 6)
      • 20. Inan, T., Halici, U.: ‘3-D face recognition with local shape descriptors’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 577587.
    7. 7)
      • 27. Belongie, S., Malik, J., Puzicha, J.: ‘Shape matching and object recognition using shape context’, IEEE Trans. PAMI, 2002, 24, (4), pp. 509522.
    8. 8)
      • 29. Koenderink, J.J.: ‘Solid shape’ (Ser. Artificial Intelligence, MIT Press, Cambridge, MA, 1990).
    9. 9)
      • 14. Huang, D., Ardabilian, M., Wang, Y., et al: ‘3-D face recognition using eLBP-based facial description and local feature hybrid matching’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15511565.
    10. 10)
      • 24. Soltanpour, S., Wu, Q.M.J., Anvaripour, M.: ‘Multimodal 2D–3D face recognition using structural context and pyramidal shape index’. Proc. of IET Conf. on Imaging for Crime Prevention and Detection (ICDP), July 2015, pp. 16.
    11. 11)
      • 23. Savran, A., Alyüz, N., Dibeklioğlu, H., et al: ‘Bosphorus database for 3D face analysis’. Proc. of European Workshop on Biometrics and Identity Management, May 2008, pp. 4756.
    12. 12)
      • 19. Bayramoglu, N., Alatan, A.A.: ‘Shape index SIFT: range image recognition using local features’. Proc. of IEEE Int. Conf. on Pattern Recognition, August 2010, pp. 352355.
    13. 13)
      • 9. Huang, D., Soltana, W.B., Ardabilian, M., et al: ‘Textured 3d face recognition using biological vision-based facial representation and optimized weighted sum fusion’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition Workshops, June 2011, pp. 18.
    14. 14)
      • 3. Mian, A.S., Bennamoun, M., Owens, R.: ‘An efficient multimodal 2D–3D hybrid approach to automatic face recognition’, IEEE Trans. PAMI, 2007, 29, (11), pp. 19271943.
    15. 15)
      • 16. Liu, W., Yang, Y.: ‘Structural context for object categorization’. Proc. of Pacific-Rim Conf. on Multimedia, , 2009, pp. 280291.
    16. 16)
      • 5. Liu, P., Wang, Y., Huang, D., et al: ‘Learning the spherical harmonic features for 3-D face recognition’, IEEE Trans. Image Process., 2013, 22, (3), pp. 914925.
    17. 17)
      • 30. Jain, A.K., Nandakumar, K., Ross, A.: ‘Score normalization in multimodal biometric systems’, Pattern Recogn., 2005, 38, (12), pp. 22702285.
    18. 18)
      • 18. Guo, Y., Bennamoun, M., Sohel, F., et al: ‘A comprehensive performance evaluation of 3D local feature descriptors’, Int. J. Comput. Vis., 2016, 116, (1), pp. 6689.
    19. 19)
      • 21. Huang, D., Zhang, G., Ardabilian, M., et al: ‘3d face recognition using distinctiveness enhanced facial representations and local feature hybrid matching’. Proc. of IEEE Int. Conf. on Biometrics: Theory Applications and Systems (BTAS), September 2010, pp. 17.
    20. 20)
      • 28. Li, H., Huang, D., Lemaire, P., et al: ‘Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities’. Proc. of Int. Conf. on Image Processing, September 2011, pp. 30533056.
    21. 21)
      • 15. Lei, Y., Bennamoun, M., El-Sallam, A.A.: ‘An efficient 3D face recognition approach based on the fusion of novel local low-level features’, Pattern Recogn., 2013, 46, (1), pp. 2437.
    22. 22)
      • 8. Bennamoun, M., Guo, Y., Sohel, F.: ‘Feature selection for 2D and 3D face recognition’, in Bennamoun, Mohammed, Guo, Yulan, Sohel, Ferdous (Eds.): ‘Wiley Encyclopedia of Electrical and Electronics EngineeringWiley Online Library (2015), pp. 154.
    23. 23)
      • 2. Hailing, Z., Ajmal, M., Lei, W.: ‘Recent advances on single modal and multimodal face recognition: a survey’, IEEE Trans. Hum.-Mach. Syst., 2014, 44, (6), pp. 701716.
    24. 24)
      • 4. Bowyer, K.W., Chang, K., Flynn, P.: ‘A survey of approaches and challenges in 3d and multi-modal 3d + 2d face recognition’, Comput. Vis. Image Underst., 2006, 101, (1), pp. 115.
    25. 25)
      • 7. Lei, Y., Bennamoun, M., Hayat, M., et al: ‘An efficient 3D face recognition approach using local geometrical signatures’, Pattern Recogn., 2014, 47, (2), pp. 509524.
    26. 26)
      • 25. Erdogmus, N., Dugelay, J.L.: ‘3D assisted face recognition: dealing with expression variations’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (5), pp. 826838.
    27. 27)
      • 17. Lowe, D.G.: ‘Distinctive image features from scale invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    28. 28)
      • 13. Al-Osaimi, F.R., Bennamoun, M., Mian, A.: ‘Spatially optimized data-level fusion of texture and shape for face recognition’, IEEE Trans. on Image Process., 2012, 21, (2), pp. 859872.
    29. 29)
      • 12. Zhang, G., Wang, Y.: ‘Robust 3D face recognition based on resolution invariant features’, Pattern Recognit. Lett., 2011, 32, (7), pp. 10091019.
    30. 30)
      • 22. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, June 2005, pp. 947954.
    31. 31)
      • 6. Mohammadzade, H., Hatzinakos, D.: ‘Iterative closet normal point for 3d face recognition’, IEEE Trans. PAMI, 2013, 35, (2), pp. 381397.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0120
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0120
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address