Hyperspectral face recognition with log-polar Fourier features and collaborative representation based voting classifiers

Hyperspectral face recognition with log-polar Fourier features and collaborative representation based voting classifiers

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hyperspectral imagery analysis has become a popular topic for improving face recognition accuracy. Nevertheless, it encounters difficulty in data acquisition, low signal-to-noise ratio, and high dimensionality. As a result, there exists a need to develop better algorithms in order to achieve higher classification rates. In this study, the authors propose a new method for hyperspectral face recognition with very competitive experimental results. Since there is a significant amount of noise in every spectral band, they reduce noise adaptively from each spectral band by using any image denoising method, e.g. block matching and 3D filtering. They then crop each face according to its eye coordinates so that translation invariance can be achieved. They conduct log-polar transform to each cropped face image and extract 2D Fourier spectrum from them. In this way, the extracted features are approximately invariant to translation, rotation, and scaling. They use the collaborative representation-based classifier with voting for hyperspectral face recognition. They perform some experiments to test the authors’ new method for hyperspectral face recognition with very promising results.


    1. 1)
      • 1. Pan, Z., Healey, G., Prasad, M., et al: ‘Face recognition in hyperspectral images’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (12), pp. 15521560.
    2. 2)
      • 2. Pan, Z., Healey, G., Tromberg, B.: ‘Comparison of spectral-only and spectral/spatial face recognition for personal identity verification’, EURASIP J. Adv. Signal Process., 2009, 1, p. 943602.
    3. 3)
      • 3. Pan, Z., Healey, G., Tromberg, B.: ‘Hyperspectral face recognition under unknown illumination’, Opt. Eng., 2007, 46, p. 077201.
    4. 4)
      • 4. Di, W., Zhang, L., Zhang, D., et al: ‘Studies on hyperspectral face recognition in visible spectrum with feature band selection’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2010, 40, (6), pp. 13541361.
    5. 5)
      • 5. Shen, L., Zheng, S.: ‘Hyperspectral face recognition using 3D Gabor wavelets’. Int. Conf. on Pattern Recognition, 2012, pp. 15741577.
    6. 6)
      • 6. Uzair, M., Mahmood, A., Mian, A.: ‘Hyperspectral face recognition with spatiospectral information fusion and PLS regression’, IEEE Trans. Image Process., 2015, 24, (3), pp. 11271137.
    7. 7)
      • 7. Robila, S.A.: ‘Toward hyperspectral face recognition’, Proc. SPIE Image Proces. Algorithms Syst. VI, 2008, 6812, pp. 19.
    8. 8)
      • 8. Wang, H., Healey, G.: ‘Pose-invariant face recognition in hyperspectral images’. Proc. of the IPCV, 2013.
    9. 9)
      • 9. Wang, H., Bau, T.C., Healey, G.: ‘Expression-invariant face recognition in hyperspectral images’. Proc. of the SPIE, 2011, vol. 8158.
    10. 10)
      • 10. Liang, J., Zhou, J., Gao, Y.: ‘3D local derivative pattern for hyperspectral face recognition’. Proc. of the Eleventh IEEE Int. Conf. on Automatic Face and Gesture Recognition (FG'15), Ljubljana, Slovenia, 2015.
    11. 11)
      • 11. Wright, J.A., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    12. 12)
      • 12. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: which helps face recognition?’. IEEE Int. Conf. on Computer Vision, 2011, pp. 471478.
    13. 13)
      • 13. Chen, G.Y., Qian, S.E.: ‘Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (3), pp. 973980.
    14. 14)
      • 14. Chen, G.Y., Qian, S.E., Gleason, S.: ‘Denoising of hyperspectral imagery by combining PCA with block-matching 3D filtering’, Can. J. Remote Sens., 2011, 37, (6), pp. 590595.
    15. 15)
      • 15. Chen, G.Y., Bui, T.D., Quach, K.G., et al: ‘Denoising hyperspectral imagery using principal component analysis and block matching 4D filtering’, Can. J. Remote Sens., 2014, 40, (1), pp. 6067.
    16. 16)
      • 16. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    17. 17)
      • 17. Andersson, F.: ‘Fast inversion of the radon transform using log-polar coordinates and partial back-projections’, SIAM J. Appl. Math., 2005, 65, pp. 818837.
    18. 18)
      • 18. PolyU-HSFD. Available at:, accessed July 29, 2015.
    19. 19)
      • 19. Denes, L., Metes, P., Liu, Y.: ‘Hyperspectral face database’, Tech. Rep., CMU-RI-TR-02-25, Robotics Inst., Pittsburgh, PA, 2002.
    20. 20)
      • 20. Turk, M.A., Pentland, A.P.: ‘Face recognition using eigenfacces’. Proc. IEEE CVPR, 1991, pp. 586591.
    21. 21)
      • 21. Wandishin, M.S., Mullen, S.J.: ‘Multiclass ROC analysis’, Weather Forecast., 2009, 24, (2), pp. 530547.
    22. 22)
      • 22. Kingsbury, N.G.: ‘Complex wavelets for shift invariant analysis and filtering of signals’, J. Appl. Comput. Harmon. Anal., 2001, 10, (3), pp. 234253.
    23. 23)
      • 23. Cho, W., Koschan, A., Abidi, M.A.: ‘Hyperspectral face databases for facial recognition research’, In (ED): ‘Face Recognition across the Imaging Spectrum’ (Springer International Publishing, 2016), pp. 4768.

Related content

This is a required field
Please enter a valid email address