http://iet.metastore.ingenta.com
1887

Biometric authentication system using retinal vessel pattern and geometric hashing

Biometric authentication system using retinal vessel pattern and geometric hashing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Retinal vascular network pattern is unique to each individual which can be used for person identification in biometric authentication. In this study, the authors have proposed a novel biometric authentication method using retinal vascular branch, bifurcation and crossover points (i.e. feature points). The method automatically extracts the vascular network from colour retinal images and identifies these feature points. The major blood vessels characterised by width and length are identified from the segmented vascular network. For this, a novel vessel width measurement method is applied and vessels more than certain widths are selected as major vessels following an established protocol. The geometric hashing technique is developed to compute the invariant features from these feature points. They consider the feature points from major vessels which will be less susceptible to noise for modelling a basis pair and all other points together for locations in the hash table entries. The models are invariant to rotation, translation and scaling as inherited from geometric hashing. For each person, the system is trained with the models to accept or reject a claimed identity. They have tested their method on 3010 retinal images and achieved 96.64% precision and 100% recall.

References

    1. 1)
      • 1. Jain, A.K., Ross, A., Prabhakar, S.: ‘An introduction to biometric recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 420.
    2. 2)
      • 2. de Luis-Garcia, R., Alberola-Lopez, C., Aghzout, O., et al: ‘Biometric identification systems’, Signal Process., 2003, 83, pp. 25392557.
    3. 3)
      • 3. Prabhakar, S., Pankanti, S., Jain, A.K.: ‘Biometric recognition: security and privacy concerns’, IEEE Secur. Priv. Mag., 2003, 1, (2), pp. 3342.
    4. 4)
      • 4. Islam, S.M.S., Davies, R., Bennamoun, M., et al: ‘Multibiometric human recognition using 3d ear and face features’, Pattern Recogn., 2013, 46, pp. 613627.
    5. 5)
      • 5. Sonkamble, S., Thool, R., Sonkamble, B.: ‘Survey of biometric recognition systems and their applications’, J. Theor. Appl. Inf. Technol., 2005, 2, pp. 4551.
    6. 6)
      • 6. Bhattacharyya, D., Ranjan, R., Alisherov, F., et al: ‘Biometric authentication: a review’, Int. J. u- and e- Serv. Sci. Technol., 2009, 2, (3), pp. 1328.
    7. 7)
      • 7. Delac, K., Grgic, M.: ‘A survey of biometric recognition methods’. Proc. of 46th Int. Symp. Electronics in Marine, 2004, pp. 184193.
    8. 8)
      • 8. Marino, C., Penedo, M.G., Penas, M., et al: ‘Personal authentication using digital retinal images’, Pattern Anal. Appl., 2006, 9, pp. 2133.
    9. 9)
      • 9. Jain, A., Hong, L., Pankanti, S.: ‘Biometric identification’, Commun. ACM, 2000, 43, (2), pp. 9198.
    10. 10)
      • 10. Usher, D., Tosa, Y., Friedman, M.: ‘Ocular biometrics: Simultaneous capture and analysis of the retina and iris’ (Springer, 2008), pp. 123.
    11. 11)
      • 11. Jain, A.K., Ross, A., Pankanti, S.: ‘Biometrics: a tool for information security’, IEEE Trans. Inf. Forensics Sec., 2006, 1, (2), pp. 125143.
    12. 12)
      • 12. Das, R.: ‘Retinal recognition - biometrics technology in practice’, J. Doc. Identity, 2007, 22, pp. 1114.
    13. 13)
      • 13. Abrmoff, M.D., Garvin, M.K., Sonka, M.: ‘Retinal imaging and image analysis’, IEEE Trans. Med. Imaging, 2010, 3, p. 169208.
    14. 14)
      • 14. Maamari, R.N., Keenan, J.D., Fletcher, D.A., et al: ‘A mobile phone-based retinal camera for portable wide field imaging’, Br. J. Ophthalmol., 2013, pp. 14, doi: 10.1136/bjophthalmol-2013-303797.
    15. 15)
      • 15. Ortega, M., Penedo, M.G., Rouco, J., et al: ‘Personal verification based on extraction and characterisation of retinal feature points’, J. Vis. Lang. Comput., 2009, 20, pp. 8090.
    16. 16)
      • 16. Womack, M.: ‘The eyes have it’, Sens. Rev., 1994, 14, (4), pp. 1516.
    17. 17)
      • 17. Bhuiyan, A., Nath, B., Chua, J., et al: ‘Automatic detection of vascular bifurcations and crossovers from color retinal fundus images’. Proc. of Third Int. IEEE Conf. on Signal-Image Technologies and Internet-Based System (SITIS), 2007, pp. 711718.
    18. 18)
      • 18. Sabaghi, M., Hadianamrei, S.R., Zahedi, A., et al: ‘A new partitioning method in frequency analysis of the retinal images for human identification’, J. Signal Inf. Process., 2011, 2, pp. 274278.
    19. 19)
      • 19. Choras, R.S.: ‘Personal identification using retina’, J. Med. Inform. Technol., 2009, 13/2009, pp. 5358.
    20. 20)
      • 20. Harris, A.J., Yen, D.C.: ‘Biometric authentication: assuring access to information’, Inf. Manag. Comput. Secur., 2002, 10, (1), pp. 1219.
    21. 21)
      • 21. Marino, C., Penedo, M.G., Penas, M.: ‘Retinal based authentication via distributed web application’. EUROCAST 2005, 2005 (LNCS, 3643), pp. 386391.
    22. 22)
      • 22. Lajevardi, S.M., Arakala, A., Davis, S.A., et al: ‘Retina verification system based on biometric graph matching’, IEEE Trans. Image Process., 2013, 22, (9), pp. 36253635.
    23. 23)
      • 23. Saraswathi, K., Jayaram, B., Balasubramanian, R.: ‘Retinal biometrics based authentication and key exchange system’, Int. J. Comput. Appl., 2011, 9, (1), pp. 17.
    24. 24)
      • 24. Chen, L., Zhang, X.-L.: ‘Feature based retinal image registration’, Matlab Central, last accessed on 19 December, 2013, 2009, http://www.mathworks.com.au/matlabcentral/fileexchange/23015-feature-based-retinal-image-registration.
    25. 25)
      • 25. Bevilacqua, V., Cambo, S., Cariello, L., et al: ‘A combined method to detect retinal fundus features’. Proc. of European Conf. on Emergent Aspects in Clinical Data Analysis, 2005, pp. 16.
    26. 26)
      • 26. Pabitha, M., Latha, L.: ‘Efficient approach for retinal biometric template security and person authentication using noninvertible constructions’, Int. J. Comput. Appl., 2013, 69, (4), pp. 2834.
    27. 27)
      • 27. Ahmed, M.I., Amin, M.A., Poon, B., et al: ‘Retina based biometric authentication using phase congruency’, Int. J. Mach. Learn. Cybern., 2013, 5, (6), pg. 933945, doi: 10.1007/s13042-013-0179-z.
    28. 28)
      • 28. Oinonen, H., Forsvik, H., Ruusuvuori, P., et al: ‘Identity verification based on vessel matching from fundus images’. Proc. of 2010 IEEE 17th Int. Conf. on Image Processing, 2010, pp. 40894092.
    29. 29)
      • 29. Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., et al: ‘An effective retinal blood vessel segmentation method using multi-scale line detection’, Pattern Recogn., 2013, 46, (3), pp. 703715.
    30. 30)
      • 30. Bhuiyan, A., Kawasaki, R., Lamoureux, E., et al: ‘Retinal artery-vein caliber grading using color fundus imaging’, Comput. Methods Programs Biomed., 2013, 111, (1), pp. 104114.
    31. 31)
      • 31. Loncaric, S.: ‘A survey of shape analysis techniques’, Pattern Recogn., 1998, 31, pp. 9831001.
    32. 32)
      • 32. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice-Hall, 2008, 3rd edn.).
    33. 33)
      • 33. Schwartz, J., Sharir, M.: ‘Identification of partially obscured objects in two and three dimensions by matching noisy characteristic curves’, Int. J. Robot. Res., 1986, 6, (2), pp. 2944.
    34. 34)
      • 34. Lamdan, Y., Schwartz, J., Wolfson, H.: ‘Affine invariant model-based object recognition’, IEEE Trans. Robot. Autom., 1990, 6, (5), pp. 578589.
    35. 35)
      • 35. Foong, A.W.P., Saw, S.-M., Shen, S., et al: ‘Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (simes)’, Ophthalmic Epidemiol., 2007, 14, pp. 2535.
    36. 36)
      • 36. Tsai, C.-L., Stewart, C.V., Tanenbaum, H.L., et al: ‘Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images’, IEEE Trans. Inf. Technol. Biomed., 2004, 8, (2), pp. 122130.
    37. 37)
      • 37. Kanagasingam, Y., Bhuiyan, A., Abrmoff, M.D., et al: ‘Progress on retinal image analysis for age related macular degeneration’, Prog. Retin. Eye Res., 2013, 38, pp. 2042.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0024
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address