http://iet.metastore.ingenta.com
1887

Global variational method for fingerprint segmentation by three-part decomposition

Global variational method for fingerprint segmentation by three-part decomposition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Verifying an identity claim by fingerprint recognition is a commonplace experience for millions of people in their daily life, for example, for unlocking a tablet computer or smartphone. The first processing step after fingerprint image acquisition is segmentation, that is, dividing a fingerprint image into a foreground region which contains the relevant features for the comparison algorithm, and a background region. The authors propose a novel segmentation method by global three-part decomposition (G3PD). On the basis of global variational analysis, the G3PD method decomposes a fingerprint image into cartoon, texture and noise parts. After decomposition, the foreground region is obtained from the non-zero coefficients in the texture image using morphological processing. The segmentation performance of the G3PD method is compared with five state-of-the-art methods on a benchmark which comprises manually marked ground truth segmentation for 10,560 images. Performance evaluations show that the G3PD method consistently outperforms existing methods in terms of segmentation accuracy.

References

    1. 1)
      • 1. Gottschlich, C.: ‘Fingerprint growth prediction, image preprocessing and multi-level judgment aggregation’. PhD thesis, University of Goettingen, Goettingen, Germany, April 2010.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 5. Gottschlich, C., Marasco, E., Yang, A.Y., et al: ‘Fingerprint liveness detection based on histograms of invariant gradients’. Proc. IJCB, Clearwater, FL, USA, September 2014, pp. 17.
    6. 6)
      • 6. Thai, D.H., Huckemann, S., Gottschlich, C.: ‘Filter design and performance evaluation for fingerprint image segmentation’, arXiv:1501.02113 [cs.CV], January 2015.
    7. 7)
    8. 8)
      • 8. Bazen, A.M., Gerez, S.H.: ‘Segmentation of fingerprint images’. Proc. ProRISC, Veldhoven, The Netherlands, November 2001, pp. 276280.
    9. 9)
      • 9. Shen, L.L., Kot, A., Koo, W.M.: ‘Quality measures of fingerprint images’. Proc. AVBPA, Halmstad, Sweden, June 2001, pp. 266271.
    10. 10)
      • 10. Wu, C., Tulyakov, S., Govindaraju, V.: ‘Robust point-based feature fingerprint segmentation algorithm’. Proc. ICB 2007, Seoul, Korea, August 2007, pp. 10951103.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 20. Houhou, N., Thiran, J.P., Bresson, X.: ‘Fast texture segmentation based on semi-local region descriptor and active contour’, Numer. Math. Theory Methods Appl., 2009, 2, (4), pp. 445468.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 36. Yin, W., Goldfarb, D., Osher, S.: ‘Image cartoon-texture decomposition and feature selection using the total variation regularization L1 functional’. Proc. VLSM, Beijing, China, October 2005, pp. 7384.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 40. Chambolle, A.: ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vis., 2004, 20, (1–2), pp. 8997.
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • 52. Kutyniok, G., Labate, D. (Eds.): ‘Shearlets. Multiscale analysis for multivariate data’ (Birkhäuser, Boston, MA, USA, 2012).
    53. 53)
    54. 54)
    55. 55)
      • 55. Thai, D.H.: ‘Fourier and variational based approaches for fingerprint segmentation’. PhD thesis, University of Goettingen, Goettingen, Germany, January 2015.
    56. 56)
    57. 57)
    58. 58)
      • 58. Fortin, M., Glowinski, R.: ‘Augmented Lagrangian methods. Applications to the numerical solution of boundary-value problems’ (North-Holland Pub., Amsterdam, Netherlands, 1983).
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2015.0010
Loading

Related content

content/journals/10.1049/iet-bmt.2015.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address