Three-dimensional and two-and-a-half-dimensional face recognition spoofing using three-dimensional printed models

Three-dimensional and two-and-a-half-dimensional face recognition spoofing using three-dimensional printed models

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The vulnerability of biometric systems to external attacks using a physical artefact in order to impersonate the legitimate user has become a major concern over the last decade. Such a threat, commonly known as ‘spoofing’, poses a serious risk to the integrity of biometric systems. The usual low-complexity and low-cost characteristics of these attacks make them accessible to the general public, rendering each user a potential intruder. The present study addresses the spoofing issue analysing the feasibility to perform low-cost attacks with self-manufactured three-dimensional (3D) printed models to 2.5D and 3D face recognition systems. A new database with 2D, 2.5D and 3D real and fake data from 26 subjects was acquired for the experiments. Results showed the high vulnerability of the three tested systems, including a commercial solution, to the attacks.


    1. 1)
      • 1. Thalheim, L., Krissler, J.: ‘Body check: biometric access protection devices and their programs put to the test’. ct magazine, November 2002, pp. 114121.
    2. 2)
      • 2. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: ‘Impact of artificial gummy fingers on fingerprint systems’. Proc. SPIE Optical Security and Counterfeit Deterrence Techniques IV, 2002, vol. 4677, pp. 275289.
    3. 3)
      • 3. Matsumoto, T.: ‘Artificial irises: importance of vulnerability analysis’. Proc. Asian Biometrics Workshop (AWB), 2004.
    4. 4)
      • 4. Marasco, E.: ‘Secure multibiometric systems’. PhD dissertation, University of Naples Federico II, 2010.
    5. 5)
      • 5. Galbally, J.: ‘Vulnerabilities and attack protection in security systems based on biometric recognition’. PhD dissertation, Universidad Autonoma de Madrid, 2009.
    6. 6)
      • 6. Coli, P.: ‘Vitality detection in personal authentication systems using fingerprints’. PhD dissertation, Universita di Cagliari, 2008.
    7. 7)
      • 7. Marcel, S., Nixon, M., Li, S.Z. (Eds.): ‘Handbook of biometric anti-spoofing: trusted biometrics under spoofing attacks’ (Springer, London2014).
    8. 8)
      • 8. ISO/IEC WD 30107. Information Technology – Biometrics – Presentation Attack Detection, ISO/IEC Std., 2016, under development.
    9. 9)
      • 9. TABULA RASA: ‘Trusted biometrics under spoofing attacks’, 2010. Available at
    10. 10)
      • 10. IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP). IEEE, 2013. Available at
    11. 11)
      • 11. Annual Conf. of the Int. Speech Communication Association (INTERSPEECH), 2013.
    12. 12)
      • 12. Chingovska, I., Yang, J., Lei, Z., et al: ‘The 2nd competition on counter measures to 2D face spoofing attacks’. Proc. IAPR Int. Conf. on Biometrics (ICB), 2013.
    13. 13)
      • 13. Ghiani, L., Mura, V., Tocco, S., Marcialis, G.L., Roli, F.: ‘LivDet 2013 fingerprint liveness detection competition 2013’. Proc. IAPR Int. Conf. on Biometrics (ICB), 2013.
    14. 14)
      • 14. Clarkson University: ‘Livdet-iris 2013: Liveness detection-iris competition 2013’, 2013. Available at
    15. 15)
      • 15. The Guardian: ‘iPhone 5S fingerprint sensor hacked by Germany's chaos computer club’, 2013, Available at
    16. 16)
      • 16. Sky News: ‘Fake fingers fool hospital clock-in scanner’, 2013, Available at
    17. 17)
      • 17. The CNN: ‘Man in disguise boards international flight’, 2010, Available at
    18. 18)
      • 18. Kollreider, K., Fronthaler, H., Bigun, J.: ‘Evaluating liveness by face images and the structure tensor’. Proc. IEEE Workshop on Automatic Identification Advanced Technologies (AutoID), 2005, pp. 7580.
    19. 19)
    20. 20)
      • 20. Kose, N., Dugelay, J.-L.: ‘On the vulnerability of face recognition systems to spoofing mask attacks’. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2013.
    21. 21)
      • 21. Tan, X., Li, Y., Liu, J., Jiang, L.: ‘Face liveness detection from a single image with sparse low rank bilinear discriminative model’. Proc. European Conf. on Computer Vision (ECCV), ser. LNCS 6316, 2010, pp. 504517.
    22. 22)
      • 22. Zhiwei, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: ‘A face antispoofing database with diverse attacks’. Proc. IAPR Int. Conf. on Biometrics (ICB), 2012, pp. 2631.
    23. 23)
      • 23. Anjos, A., Marcel, S.: ‘Counter-measures to photo attacks in face recognition: a public database and a baseline’. Proc. IEEE Int. Joint Conf. on Biometrics (IJCB), 2011.
    24. 24)
      • 24. Arora, S.S., Cao, K., Jain, A.K., Paulter, N.G.: ‘3D fingerprint phantoms’. Proc. IEEE Int. Conf. on Pattern Recognition (ICPR), 2014.
    25. 25)
      • 25. Aggarwal, G., Biswas, S., Flynn, P.J., Bowyer, K.W.: ‘A sparse representation approach to face matching across plastic surgery’. Proc. Workshop on the Applications of Computer Vision (WACV), 2012, pp. 113119.
    26. 26)
    27. 27)
      • 27. Sun, Y., Tistarelli, M., Maltoni, D.: ‘Structural similarity based image quality map for face recognition across plastic surgery’. Proc. IEEE Conf. on Biometrics: Theory, Applications and Systems (BTAS), 2013.
    28. 28)
    29. 29)
      • 29. Dantcheva, A., Chen, C., Ross, A.: ‘Can facial cosmetics affect the matching accuracy of face recognition systems?’. Proc. IEEE Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), 2013, pp. 391398.
    30. 30)
      • 30. Tabula Rasa: ‘Tabula rasa spoofing challenge’, 2013. Available at
    31. 31)
      • 31. Li, Y., Xu, K., Yan, Q., Li, Y., Deng, R.: ‘Understanding OSN-based facial disclosure against face authentication systems’. Proc. ACM Asia Symp. on Information, Computer and Communications Security (ASIACCS), 2014, pp. 413424.
    32. 32)
      • 32. Duc, N.M., Minh, B.Q.: ‘Your face is not your password: face authentication bypassing lenovo-asus-toshiba’. Black Hat USA, 2009.
    33. 33)
      • 33. Chingovska, I., Anjos, A., Marcel, S.: ‘On the effectiveness of local binary patterns in face anti-spoofing’. Proc. IEEE Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2012, pp. 17.
    34. 34)
    35. 35)
      • 35. Erdogmus, N., Marcel, S.: ‘Spoofing in 2D face recognition with 3D masks and anti-spoofing with Kinect’. Proc. IEEE Biometrics: Theory, Applications and Systems (BTAS), 2013.
    36. 36)
      • 36. Erdogmus, N., Marcel, S.: ‘Spoofing 2D face recognition systems with 3D masks’. Proc. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2013.
    37. 37)
      • 37. Peixoto, B., Michelassi, C., Rocha, A.: ‘Face liveness detection under bad illumination conditions’. Proc. IEEE Int. Conf. on Image Processing (ICIP), 2011, pp. 35573560.
    38. 38)
      • 38. Vijayan, V., Bowyer, K.W., Flynn, P.J., et al: ‘Twins 3D face recognition challenge’. Proc. IEEE Int. Joint Conf. on Biometrics (IJCB), 2011.
    39. 39)
      • 39. Phillips, P.J., Flynn, P.J., Bowyer, K.W., et al: ‘Distinguishing identical twins by face recognition’. Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition and Workshops (FG), 2011, pp. 185192.
    40. 40)
      • 40. Klare, B., Paulino, A.A., Jain, A.K.: ‘Analysis of facial features in identical twins’. Proc. IEEE Int. Joint Conf. on Biometrics (IJCB), 2011.
    41. 41)
      • 41. Sun, Z., Paulino, A.A., Feng, J., Chai, Z., Tan, T., Jain, A.K.: ‘A study of multibiometric traits of identical twins’. Proc. SPIE Biometric Technology for Human Identification (BTHI), 2010.
    42. 42)
      • 42. BEAT: ‘BEAT: biometrics evaluation and testing’, 2012. Available at
    43. 43)
      • 43. Barnsley, M.F.: ‘Fractals everywhere’. Morgan Kaufmann, 1993, ch. Metric spaces; Equivalent spaces; Classification of subsets; and the space of fractals, pp. 541.
    44. 44)
      • 44. Henrikson, J.: ‘Completeness and total boundedness of the Hausdorff metric’, MIT Undergrad. J. Math., 1999, pp. 6980.
    45. 45)
      • 45. Huttenlocher, D., Rucklidge, W.: ‘A multiresolution technique for comparing images using the Hausdorff distance’. Technical Report, Technical Report 1321, Cornell University, Department of Computer Science, 1992.
    46. 46)
    47. 47)
      • 47. Achermann, B., Bunke, H.: ‘Classifying range images of human faces with Hausdorff distance’. Proc. of Int. Conf. on Pattern Recognition (ICPR), 2000, pp. 809813.
    48. 48)
      • 48. Pan, G., Wu, Z., Pan, Y.: ‘Automatic 3D face verification from range data’. Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2003, pp. 193196.
    49. 49)
      • 49. Russ, T., Koch, K., Little, C.: ‘3D facial recognition: a quantitative analysis’. Annual Meeting of the Institute of Nuclear Materials Management (INMM), 2004.
    50. 50)
    51. 51)
      • 51. Phillips, P.J., Flynn, P.J., Scruggs, T., et al: ‘Overview of the face recognition grand challenge’. Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2005, pp. 947954.
    52. 52)
      • 52. Russ, T., Koch, M., Little, C.: ‘A 2D range Hausdorff approach for 3D face recognition’. Proc. IEEE Workshop on Face Recognition Grand Challenge Experiments, 2005.
    53. 53)
      • 53. ArtecID. (2014) ArtecID – Artec 3D Face LogOn: Data sheet. ArtecID. Available at
    54. 54)
      • 54. Marasco, E., Johnson, P., Sansone, C., Schuckers, S.: ‘Increase the security of multibiometric systems by incorporating a spoofing detection algorithm in the fusion mechanism’. Proc. Int. Workshop on Multiple Classifier Systems (MCS), ser. Springer, 2011 (LNCS, 6713), pp. 309318.
    55. 55)
      • 55. Johnson, P., Lazarick, R., Marasco, E., Newton, E., Ross, A., Schuckers, S.: ‘Biometric liveness detection: framework and metrics’. Proc. NIST Int. Biometric Performance Conf. (IBPC), 2012.
    56. 56)
      • 56. Chingovska, I., Anjos, A., Marcel, S.: ‘Anti-spoofing in action: joint operation with a verification system’. Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition Workshops (CVPR-W), 2013, pp. 98104.
    57. 57)
      • 57. Pan, G., Sun, L., Wu, Z., Lao, S.: ‘Eyeblink-based anti-spoofing in face recognition from a generic webcamera’. Proc. IEEE Int. Conf. on Computer Vision (ICCV), 2007, pp. 1420.
    58. 58)
    59. 59)
    60. 60)
      • 60. de Freitas Pereira, T., Komulainen, J., Anjos, A., et al: ‘Face liveness detection using dynamic texture’, EURASIP J. Image Video Process., 2014, 2, doi:10.1186/1687-5281-2014-2.
    61. 61)
    62. 62)
      • 62. Kose, N., Dugelay, J.-L.: ‘Reflectance analysis based countermeasure technique to detect face mask attacks’. Proc. IEEE Int. Conf. on Digital Signal Processing (DSP), 2013.

Related content

This is a required field
Please enter a valid email address