http://iet.metastore.ingenta.com
1887

Method for using visible ocular vasculature for mobile biometrics

Method for using visible ocular vasculature for mobile biometrics

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Securing personal information on handheld devices, especially smartphones, has gained a significant interest in recent years. Yet, most of the popular biometric modalities require additional hardware. To overcome this difficulty, the authors propose utilising the existing visible light cameras in mobile devices. Leveraging visible vascular patterns on whites of the eye, they develop a method for biometric authentication suitable for smartphones. They start their process by imaging and segmenting whites of the eyes, followed by image quality assessment. The authors’ stage 1 matcher is a three-step process that entails extracting interest points [Harris–Stephens, features from accelerated segment test, and speeded up robust features (SURF)], building features (SURF and fast retina keypoint) around those points, and match score generation using random sample consensus-based registration. Stage 2 matcher uses registered Gabor phase filtered images to generate orientation of local binary pattern features for its correlation-based match metric. A fusion of stage 1 and stage 2 match scores is calculated for the final decision. Using a dataset of 226 users, the authors’ results show equal error rates as low as 0.04% for long-term verification tests. The success of their framework is further validated on UBIRIS v1 database.

References

    1. 1)
      • 1. ‘Gartner says smartphone sales grew 46.5% in second quarter of 2013 and exceeded feature phone sales for first time’, www.gartner.com/newsroom/id/24828156, accessed 1 November 2014.
    2. 2)
      • 2. Mosa, A.S.M., Yoo, I., Sheets, L.: ‘A systematic review of healthcare application of smartphones’, BMC Med. Inf. Decis. Mak., 2012, 12, (67), pp. 131.
    3. 3)
    4. 4)
      • 4. Milosevic, M., Shrove, M.T., Jovanov, E.: ‘Applications of smartphones for ubiquitous health monitoring and wellbeing management’, J. Inf. Technol. Appl., 2011, 1, (1), pp. 715.
    5. 5)
    6. 6)
      • 6. Jain, A.K., Flynn, P., Ross, A.: ‘Handbook of biometrics’ (Springer Science, 2008).
    7. 7)
    8. 8)
      • 8. Gottemukkula, V., Saripalle, S.K., Derakhshani, R., et al: ‘A texture-based method for identification of retinal vasculature’. Proc. of IEEE Int. Conf. on Technologies for Homeland Security, Boston, USA, November 2011, pp. 434439.
    9. 9)
      • 9. Ortega, M., Marino, C., Penedo, M.G., et al: ‘Biometric authentication using digital retinal images’. Proc. Fifth WSEAS Int. Conf. on Applied Computer Science, April 2006, pp. 422427.
    10. 10)
      • 10. Derakhshani, R., Ross, A.: ‘Conjunctival scans for personal identification’. US Patent 7327860, 2008.
    11. 11)
    12. 12)
      • 12. Gottemukkula, V., Saripalle, S.K., Tankasala, S.P., et al: ‘Fusing iris and conjunctival vasculature: Ocular biometrics in the visible spectrum’. Proc. of IEEE Conf. on Technologies for Homeland Security, Boston, USA, November 2012, pp. 150155.
    13. 13)
      • 13. Derakhshani, R., Ross, A., Crihalmeanu, S.: ‘A new biometric modality based on conjunctival vasculature’. Proc. of Artificial Neural Networks in Engineering, St. Louis, November 2006.
    14. 14)
      • 14. Bron, A.J., Tripathi, R.C., Tripathi, C.J.: ‘Wolff's anatomy of the eye and orbit’ (Chapman & Hall Med., London, 1997, 8th edn.).
    15. 15)
    16. 16)
      • 16. Derakhshani, R., Ross, A.: ‘A texture-based neural network classifier for biometric identification using ocular surface vasculature’. Proc. of IJCNN, Orlando, USA, August 2007, pp. 1217.
    17. 17)
    18. 18)
      • 18. Tankasala, S.P., Doynov, P., Derakhshani, R., et al: ‘Biometric recognition of conjunctival vasculature using GLCM features’. Proc. of Int. Conf. on Image Information Processing, Himachal Pradesh, India, November 2011, pp. 16.
    19. 19)
      • 19. Tankasala, S.P., Doynov, P., Derakhshani, R.: ‘Application of pyramidal directional filters for biometric identification using conjunctival vasculature patterns’. Proc. of IEEE Int. Conf. on Technologies for Homeland Security, Boston, USA, November 2013, pp. 639644.
    20. 20)
      • 20. Proença, H., Alexandre, L.A.: ‘UBIRIS: a noisy iris image database’. Proc. 13th Int. Conf. on Image Analysis and Processing, 2005, pp. 970977.
    21. 21)
      • 21. Thomas, N.L., Du, Y., Zhou, Z.: ‘A new approach for sclera vein recognition’. Proc. of SPIE Mobile Multimedia/Image Processing, Security, and Applications, April 2010, vol. 7708, doi:10.1117/12.849706.
    22. 22)
    23. 23)
      • 23. Oh, K., Toh, K.A.: ‘Extracting sclera features for cancelable identity verification’. Proc. Fifth Int. Conf. on Biometrics, New Delhi, India, March–April 2012, pp. 245250.
    24. 24)
      • 24. Tankasala, S.P., Doynov, P., Derakhshani, R.: ‘Visible spectrum, bi-modal ocular biometrics’. Proc. of ICCCS, 2012, pp. 564573.
    25. 25)
      • 25. Zhou, Z., Du, E.Y., Belcher, C., et al: ‘Quality fusion based multimodal eye recognition’. Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, Seoul, South Korea, October 2012, pp. 12971302.
    26. 26)
      • 26. Das, A., Pal, U., Ballester, M.A.F., et al: ‘Sclera recognition using dense-SIFT’. Proc. 13th Int. Conf. on Intelligent Systems Design and Applications, Bangi, December 2013, pp. 7479.
    27. 27)
    28. 28)
      • 28. Das, A., Pal, U., Ballester, M.A.F., et al: ‘Fuzzy logic based sclera recognition’. Proc. of IEEE Int. Conf. on Fuzzy Systems, Beijing, China, July 2014, pp. 561568.
    29. 29)
    30. 30)
      • 30. Crihalmeanu, S., Ross, A.: ‘On the use of multispectral conjunctival vasculature as a soft biometrics’. Proc. of IEEE Workshop on Applications of Computer Vision, Kona, HI, January 2011, pp. 204211.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 34. Derakhshani, R., Gottemukkula, V.: ‘Quality metrics for biometric authentication’. US Patent 8483459, 2013.
    35. 35)
    36. 36)
    37. 37)
      • 37. Wang, Z., Sheikh, H.R., Bovik, A.C.: ‘No-reference perceptual quality assessment of JPEG compressed images’. Proc. of Int. Conf. on Image Processing, 2002, pp. 477480.
    38. 38)
      • 38. Winthrop, S.R., Cleary, P.E., Minckler, D.S., et al: ‘Penetrating eye injuries: a histopathological review’, J. Ophthalmol., 1980, 64, (11), pp. 809817.
    39. 39)
    40. 40)
      • 40. Harris, C., Stephens, M.: ‘A combined corner and edge detector’. Proc. of the Alvey Vision Conf., 1988, pp. 147151.
    41. 41)
      • 41. Rosten, E., Drummond, T.: ‘Machine learning for high-speed corner detection’, ECCV, 2006, vol. 3951, pp. 430443.
    42. 42)
    43. 43)
      • 43. Alahi, A., Ortiz, R., Vandergheynst, P.: ‘FREAK: fast retina keypoint’. Proc. of CVPR, June 2012, pp. 510517.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 48. Derakhshani, R., Gottemukkula, V., Hughlett, C.: ‘Texture features for biometric authentication’. US Patent 8369595, 2013.
    49. 49)
      • 49. Bu, W., Wu, X., Gao, E.: ‘Hand vein recognition based on orientation of LBP’. Proc. of SPIE, April 2012, vol. 8371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2014.0059
Loading

Related content

content/journals/10.1049/iet-bmt.2014.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address