http://iet.metastore.ingenta.com
1887

Fast neighbourhood component analysis with spatially smooth regulariser for robust noisy face recognition

Fast neighbourhood component analysis with spatially smooth regulariser for robust noisy face recognition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For the robust recognition of noisy face images, in this study, the authors improved the fast neighbourhood component analysis (FNCA) model by introducing a novel spatially smooth regulariser (SSR), resulting in the FNCA-SSR model. The SSR can enforce local spatial smoothness by penalising large differences between adjacent pixels, and makes FNCA-SSR model robust against noise in face image. Moreover, the gradient of SSR can be efficiently computed in image space, and thus the optimisation problem of FNCA-SSR can be conveniently solved by using the gradient descent algorithm. Experimental results on several face data sets show that, for the recognition of noisy face images, FNCA-SSR is robust against Gaussian noise and salt and pepper noise, and can achieve much higher recognition accuracy than FNCA and other competing methods.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 7. He, X., Niyogi, P.: ‘Locality preserving projections’. Proc. Adv. Neural Information Processing Systems, 2003, vol. 16, pp. 234241.
    8. 8)
    9. 9)
    10. 10)
      • 10. Fu, Y., Huang, T.: ‘Locally linear embedded eigenspace analysis’ (IFP-TR, Univ. of Illinois at Urbana-Champaign, 2005).
    11. 11)
    12. 12)
    13. 13)
      • 13. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: ‘Neighbourhood components analysis’. Proc. Adv. Neural Information Processing Systems, Vancover, Canada, December 2004, pp. 513520.
    14. 14)
      • 14. Torresani, L., Lee, K.-C.: ‘Large margin component analysis’. Proc. Adv. Neural Information Processing Systems, 2007, vol. 19, pp. 13851392.
    15. 15)
      • 15. Nie, F., Xiang, S., Zhang, C.: ‘Neighborhood MinMax projections’. Proc. 20th Int. Joint Conf. on Artificial Intell. (IJCAI 2007), 2007, pp. 993998.
    16. 16)
      • 16. Weinberger, K.Q., Blitzer, J., Saul, L.K.: ‘Distance metric learning for large margin nearest neighbor classification’, J. Mach. Learn. Res., 2009, 10, pp. 207244.
    17. 17)
    18. 18)
      • 18. Guillaumin, M., Verbeek, J., Schmid, C.: ‘Is that you? metric learning approaches for face identification’. Proc. IEEE 12th Int. Conf. Comp. Vis., Kyoto, September 2009, pp. 498505.
    19. 19)
      • 19. Guillaumin, M., Verbeek, J., Schmid, C.: ‘Multiple instance metric learning from automatically labeled bags of faces’. Proc. 11th Eur. Conf. Comp. Vis., Heraklion, Crete, Greece, September 2010, pp. 634647.
    20. 20)
      • 20. Nguyen, H.V., Bai, L.: ‘Cosine similarity metric learning for face verification’. Proc. 10th Asian Conf. Comp. Vis., Queenstown, New Zealand, November 2010, pp. 709720.
    21. 21)
      • 21. Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: ‘Large scale metric learning from equivalence constraints’. Proc. IEEE Int. Conf. Comp. Vis. Patt. Recogn., Providence, RI, 2012, pp. 22882295.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 26. Cai, D., He, X., Hu, Y., Han, J., Huang, T.: ‘Learning a spatially smooth subspace for face recognition’. Proc. IEEE Int. Conf. Comp. Vis. Patt. Recogn., Minneapolis, MN, June 2007, pp. 650656.
    27. 27)
    28. 28)
    29. 29)
      • 29. Chambolle, A.: ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vis., 2004, 20, (1–2), pp. 8997.
    30. 30)
      • 30. Hirsch, M., Schuler, C.J., Harmeling, S., Scholkopf, B.: ‘Fast removal of non-uniform camera shake’. Proc. IEEE 13th Int. Conf. Comp. Vis., Barcelona, November 2011, pp. 463470.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2013.0087
Loading

Related content

content/journals/10.1049/iet-bmt.2013.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address