http://iet.metastore.ingenta.com
1887

access icon openaccess Score calibration in face recognition

  • PDF
    473.4794921875Kb
  • HTML
    140.4130859375Kb
  • XML
    150.439453125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/3/4/IET-BMT.2013.0066.html;jsessionid=m253x326plii.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2013.0066&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: ‘The common biometrics: Guide to biometrics’ (Springer, 2004).
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 10. Jafri, R., Arabnia, H.R.: ‘A survey of face recognition techniques’, JIPS, 2009, 5, (2), pp. 4168.
    11. 11)
    12. 12)
    13. 13)
      • 13. Pelecanos, J., Sridharan, S.: ‘Feature warping for robust speaker verification’. Odyssey: The Speaker and Language Recognition Workshop, International Speech Communication Association (ISCA), 2001, pp. 213218.
    14. 14)
      • 14. Wallace, R., McLaren, M., McCool, C., Marcel, S.: ‘Inter-session variability modelling and joint factor analysis for face authentication’. Int. Joint Conf. Biometrics (IJCB), 2011, pp. 18.
    15. 15)
    16. 16)
    17. 17)
      • 17. Ramos-Castro, D., Gonzalez-Rodriguez, J., Ortega-Garcia, J.: ‘Likelihood ratio calibration in a transparent and testable forensic speaker recognition framework’. Odyssey: The Speaker and Language Recognition Workshop, IEEE, International Speech Communication Association (ISCA), 2006, pp. 18.
    18. 18)
      • 18. Castro, D.R.: ‘Forensic evaluation of the evidence using automatic speaker recognition systems’. PhD thesis, Universidad autónoma de Madrid, 2007.
    19. 19)
    20. 20)
      • 20. National Institute of Standards and Technology: The NIST Year 2010 Speaker Recognition Evaluation Plan. Available at: http://www.nist.gov/itl/iad/mig/sre12.cfm.
    21. 21)
    22. 22)
      • 22. Champod, I.C., Evett, I.W., Kuchler, B.: ‘Earmarks as evidence: a critical review’, J. Forensic Sci., 2001, 46, (6), pp. 1275.
    23. 23)
      • 23. Champod, C., Evett, I.W.: ‘A probabilistic approach to fingerprint evidence’, J. Forensic Identif., 2001, 51, (2), pp. 101122.
    24. 24)
      • 24. Poh, N., Tistarelli, M.: ‘Customizing biometric authentication systems via discriminative score calibration’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2012, pp. 26812686.
    25. 25)
    26. 26)
      • 26. Ahonen, T., Hadid, A., Pietikainen, M.: ‘Face recognition with local binary patterns’. European Conf. Computer Vision, Proc. Workshop on Dynamical Vision, 2004, pp. 469481.
    27. 27)
      • 27. Križaj, J., Štruc, V., Pavešič, N.: ‘Adaptation of SIFT features for robust face recognition’. ICIAR10, 2010, pp. 394404.
    28. 28)
    29. 29)
      • 29. Cox, D.D., Pinto, N.: ‘Beyond simple features: a large-scale feature search approach to unconstrained face recognition’, 2011.
    30. 30)
      • 30. Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D.L., Weng, J.: ‘Discriminant analysis of principal components for face recognition’ (Springer, Berlin, 1998), pp. 7385. http://www.face-rec.org/algorithms/LDA/zhao98discriminant.pdf.
    31. 31)
      • 31. Moghaddam, B., Wahid, W., Pentland, A.: ‘Beyond eigenfaces: probabilistic matching for face recognition’. IEEE Int. Conf. Automatic Face and Gesture Recognition, 1998, pp. 3035.
    32. 32)
      • 32. Phillips, P.J.: ‘Support vector machines applied to face recognition’. Advances in Neural Information Processing Systems (MIT Press, 1999), vol. 11, pp. 803809.
    33. 33)
    34. 34)
      • 34. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: ‘Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition’. IEEE Int. Conf. Computer Vision, 2005, vol. 1, pp. 786791.
    35. 35)
      • 35. Günther, M., Wallace, R., Marcel, S.: ‘An open source framework for standardized comparisons of face recognition algorithms’, in: Fusiello, A., Murino, V., Cucchiara, R. (eds.): Computer Vision – ECCV 2012. Workshops and Demonstrations, Volume 7585 of Lecture Notes in Computer Science, Berlin, October 2012, pp. 547556.
    36. 36)
      • 36. Anjos, A., El Shafey, L., Wallace, R., Günther, M., McCool, C., Marcel, S.: ‘Bob: a free signal processing and machine learning toolbox for researchers’. 20th ACM Conf. Multimedia Systems (ACMMM), Nara, Japan, October 2012.
    37. 37)
    38. 38)
      • 38. Zheng, R., Zhang, S., Xu, B.: ‘A comparative study of feature and score normalization for speaker verification’. Proc. 2006 Int. Conf. Advances in Biometrics, ICB'06, Berlin, Heidelberg, 2006, pp. 531538.
    39. 39)
    40. 40)
    41. 41)
      • 41. van Leeuwen, D.A.: ‘The TNO SRE-2008 speaker recognition system’. Proc. NIST Speaker Recognition Evaluation Workshop, Montreal, 2009.
    42. 42)
      • 42. Garcia-Romero, D., Fierrez-Aguilar, J., Gonzalez-Rodriguez, J., Ortega-Garcia, J.: ‘On the use of quality measures for text-independent speaker recognition’. Odyssey: The Speaker and Language Recognition Workshop. International Speech Communication Association (ISCA), 2004.
    43. 43)
    44. 44)
    45. 45)
      • 45. Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.: ‘The DET curve in assessment of detection task performance’. Technical Report, DTIC Document, 1997.
    46. 46)
      • 46. Günther, M., Costa-Pazo, A., Ding, C., et al: ‘The 2013 face recognition evaluation in mobile environment’. The Sixth IAPR Int. Conf. Biometrics, 2013.
    47. 47)
      • 47. van Leeuwen, D.A., Brümmer, N.: ‘An introduction to application-independent evaluation of speaker recognition systems’. Speaker classification I (Springer, 2007), pp. 330353.
    48. 48)
      • 48. Brümmer, N., de Villiers, E.: ‘The Bosaris toolkit: theory, algorithms and code for surviving the new DCF’. arXiv preprint arXiv:1304.2865, 2013.
    49. 49)
    50. 50)
      • 50. van Leeuwen, D.A., Brümmer, N.: ‘The distribution of calibrated likelihood-ratios in speaker recognition’, 2013, Interspeech.
    51. 51)
      • 51. Mandasari, M.I., Saeidi, R., McLaren, M., van Leeuwen, D.A.: ‘Quality measure functions for calibration of speaker recognition system in various duration conditions’, IEEE Trans. Audio Speech Lang. Process., 2013.
    52. 52)
      • 52. McCool, C., Marcel, S., Hadid, A., et al: ‘Bi-modal person recognition on a mobile phone: using mobile phone data’. IEEE ICME Workshop on Hot Topics in Mobile Multimedia, July 2012, pp. 635640.
    53. 53)
    54. 54)
      • 54. Lui, Y.M., Bolme, D.S., Phillips, P.J., Beveridge, J.R., Draper, B.A.: ‘Preliminary studies on the good, the bad, and the ugly face recognition challenge problem’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2012, pp. 916.
    55. 55)
      • 55. Cardinaux, F., Sanderson, C., Marcel, S.: ‘Comparison of MLP and GMM classifiers for face verification on XM2VTS’. Fourth Int. Conf. Audio- and Video-Based Biometric Person Authentication, University of Surrey, Guildford, UK, 2003.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2013.0066
Loading

Related content

content/journals/10.1049/iet-bmt.2013.0066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address