http://iet.metastore.ingenta.com
1887

Separating the real from the synthetic: minutiae histograms as fingerprints of fingerprints

Separating the real from the synthetic: minutiae histograms as fingerprints of fingerprints

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors show that by the current state-of-the-art synthetically generated fingerprints can easily be discriminated from real fingerprints. They propose a non-parametric distribution-based method using second-order extended minutiae histograms (MHs) which can distinguish between real and synthetic prints with very high accuracy. MHs provide a fixed-length feature vector for a fingerprint which are invariant under rotation and translation. This ‘test of realness’ can be applied to synthetic fingerprints produced by any method. In this study, tests are conducted on the 12 publicly available databases of FVC2000, FVC2002 and FVC2004 which are well established benchmarks for evaluating the performance of fingerprint recognition algorithms; 3 of these 12 databases consist of artificial fingerprints generated by the SFinGe software. In addition, they evaluate the discriminative performance on a database of synthetic fingerprints generated by the software of Bicz against real fingerprint images. They conclude with suggestions for the improvement of synthetic fingerprint generation.

References

    1. 1)
      • 1. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: ‘Handbook of fingerprint recognition’ (Springer, London, UK, 2009).
    2. 2)
      • 2. Cappelli, R., Erol, A., Maio, D., Maltoni, D.: ‘Synthetic fingerprint-image generation’. Proc. 15th Int. Conf. Pattern Recogn. (ICPR), Barcelona, Spain, September 2000, pp. 37.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Zhao, Q., Jain, A.K., Paulter, N.G., Taylor, M.: ‘Fingerprint image synthesis based on statistical feature models’. Proc. Fifth Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington, D.C., September 2012, pp. 2330.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Babler, W.J.: ‘Embryologic development of epidermal ridges and their configurations’, Birth Defects Original Article Series, 1991, 27, (2), pp. 95112.
    14. 14)
    15. 15)
      • 15. Ratha, N., Bolle, R. (Eds): ‘Automatic fingerprint recognition systems’ (Springer, New York, USA, 2004).
    16. 16)
    17. 17)
      • 17. Araque, J.L., Baena, M., Chalela, B.E., Navarro, D., Vizcaya, P.R.: ‘Synthesis of fingerprint images’. Proc. 16th Int. Conf. Pattern Recogn. (ICPR), 2002, pp. 422425.
    18. 18)
      • 18. Bicz, W.: ‘The idea of description (reconstruction) of fingerprints with mathematical algorithms and history of the development of this idea at Optel’. Available at http://www.optel.pl/article/english/idea.htm, 2003.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 24. Choi, H., Kang, R., Choi, K., Jin, A.T.B., Kim, J.: ‘Fake-fingerprint detection using multiple static features’, Opt. Eng., 2009, 48, (4), pp. 113.
    25. 25)
      • 25. Jin, S.-I., Bae, Y.-S., Maeng, H.-J., Lee, H.-S.: ‘Fake fingerprint detection based on image analysis’. Proc. SPIE 7536, San Jose, CA, USA, January 2010.
    26. 26)
      • 26. Sousedik, C., Busch, C.: ‘Presentation attack detection methods for fingerprint recognition systems: a survey’, IET Biometrics, 2014, doi: 10.1049/iet-bmt.2013.0020.
    27. 27)
      • 27. Marasco, E., Ross, A.: ‘A survey on fingerprint anti-spoofing schemes’, ACM Comput. Surv., 2014, pp. 136, in press.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. Bertsekas, D.P.: ‘Linear network optimization’ (MIT Press, 1991).
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 37. Maio, D., Maltoni, D., Capelli, R., Wayman, J.L., Jain, A.K.: ‘FVC2002: second fingerprint verification competition’. Proc. 16th Int. Conf. on Pattern Recogn. (ICPR), 2002, vol. 3, pp. 811814.
    38. 38)
      • 38. Maio, D., Maltoni, D., Capelli, R., Wayman, J.L., Jain, A.K.: ‘FVC2004: third fingerprint verification competition’. Proc. Int. Conf. on Biometric Authentication (ICBA), Hong Kong, 2004, pp. 17.
    39. 39)
      • 39. Mardia, K.V., Kent, J.T., Bibby, J.M.: ‘Multivariate analysis’. ‘Probability and Mathematical Statistics’ (Academic Press, 1979).
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 44. Lamdan, Y., Wolfson, H.J.: ‘Geometric hashing: a general and efficient model-based recognition scheme’. Proc. ICCV, Tampa, FL, USA, December 1988, pp. 238249.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 48. De Boer, J., Bazen, A.M., Gerez, S.H.: ‘Indexing fingerprint databases based on multiple features’. Proc. ProRisc Workshop on Circuits, Systems and Signal Processing, 2001, pp. 300306.
    49. 49)
    50. 50)
      • 50. Galton, F.: ‘Finger prints’ (MacMillan, London, UK, 1892).
    51. 51)
      • 51. Lee, H.C., Gaensslen, R.E. (Eds): ‘Advances in fingerprint technology’ (CRC Press, Boca Raton, 2001).
    52. 52)
    53. 53)
    54. 54)
      • 54. Wertheim, K., Maceo, A.V.: ‘The critical stage of friction ridge pattern formation’, J. Forensic Identif., 2002, 52, (1), pp. 3585.
    55. 55)
      • 55. Study Scientific Working Group on Friction Ridge Analysis and Technology (SWGFAST): ‘The fingerprint sourcebook’. August 2011.
    56. 56)
      • 56. Committee on Identifying the Needs of the Forensic Sciences Community, National Research Council: ‘Strengthening forensic science in the United States: a path forward’ (The National Academies Press, Washington, DC, 2009).
    57. 57)
    58. 58)
    59. 59)
    60. 60)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2013.0065
Loading

Related content

content/journals/10.1049/iet-bmt.2013.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address