http://iet.metastore.ingenta.com
1887

Facial biometrics for situational awareness systems

Facial biometrics for situational awareness systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study contributes to developing the concept of decision-making support in biometric-based situational awareness systems. Such systems assist users in gathering and analysing biometric data, and support the decision-making on the human behavioural pattern and/or authentication. As an example, the authors consider a facial biometric assistant that functions based on multi-spectral biometrics in visible and infrared bands; it involves facial expression recognition, face recognition in both spectra, as well as estimation of physiological parameters. The authors also investigate usage of facial biometrics for the semantic representation for advanced decision-making.

References

    1. 1)
      • 1. ‘Total Information Awareness DAPRA's Research Program’: Inf. Secur., 2003, 10, pp. 105109.
    2. 2)
      • 2. TSA Guidance Package: ‘Biometrics for Airport Access Control’. September, 2005, www.acconline.org/documents/biometrics_guidance.pdf.
    3. 3)
      • 3. Matey, J.R., Naroditsky, O., Hanna, K., et al: ‘Iris on the move: acquisition of images for iris recognition in less constrained environments’, Proc. IEEE, 2006, 94, (11), pp. 19361947 (doi: 10.1109/JPROC.2006.884091).
    4. 4)
      • 4. MorphoTrak, http://www.morphotrak.com/MorphoTrak/MorphoTrak/mt_whoweare.html.
    5. 5)
      • 5. Chague, S., Droit, B., Boulanov, O., Yanushkevich, S.N., Shmerko, V.P., Stoica, A.: ‘Biometric-based decision support assistance in physical access control systems’. Proc. Conf. Bio-inspired, Learning and Intelligent Systems for Security, 2008, pp. 1116.
    6. 6)
      • 6. Yanushkevich, S.N., Stoica, A., Shmerko, V.P.: ‘Experience of design and prototyping of a multi-biometric early warning physical access control security system (PASS) and a training system (T-PASS)’. Proc. 32nd Annual IEEE Industrial Electronics Society Conf., Paris, November 2006, pp. 23472352.
    7. 7)
      • 7. http://en.wikipedia.org/wiki/Future_Attribute_Screening_Technology.
    8. 8)
      • 8. DHS: ‘Privacy Impact Assessment for the Future Attribute Screening Technology (FAST) Project’. 15 December, 2008, dhs.gov, retrieved May 2011.
    9. 9)
      • 9. Boulanov, O.R., Gavrilova, M.L., Poursaberi, A., et al: ‘Biometric-based intelligent agent systems’. IADIS Int. Conf. Intelligent Systems and Agents, 2011, pp. 162164.
    10. 10)
      • 10. Jain, A.K., Nandakumar, K., Uludag, U., Lu, X.: ‘Multimodal biometrics: augmenting face with other cues’, in Zhao, W., Chellappa, R. (Eds.): ‘Face processing: advanced modeling and methods’ (Elsevier, 2006).
    11. 11)
      • 11. Monwar, M., Gavrilova, M.L.: ‘A multimodal biometric system using rank level fusion approach’, IEEE Trans. SMC. Part B, Special Issue on Cognitive Informatics and Cybernetics, 2009, 39, (5), pp. 867878 (doi: 10.1109/TSMCB.2008.2009071).
    12. 12)
      • 12. Yanushkevich, S.N., Hurley, D., Wang, P.S.P.: ‘Analysis vs synthesis in biometrics’, Int. J. Pattern Recognit. Artif. Intell., 2008, 22, (3), pp. 367369 (doi: 10.1142/S0218001408006466).
    13. 13)
      • 13. Yanushkevich, S.N., Stoica, A., Shmerko, V.P.: ‘Fundamentals of biometric-based training system design’, ‘Image Pattern Recognition: Synthesis and Analysis in Biometrics’ (World Scientific, 2007), pp. 365406.
    14. 14)
      • 14. Ekman, P., Friesen, W.V., Hager, J.C.: ‘Facial action coding system: investigator's guide’. Research Nexus, Network Information Research Corporation, 2002.
    15. 15)
      • 15. Tian, Y., Kanade, T., Cohn, J.F.: ‘Recognizing action units for facial expression analysis’, IEEE Trans. PAMI, 2001, 23, (2), pp. 97115 (doi: 10.1109/34.908962).
    16. 16)
      • 16. Capdiferro, L., Casieri, V., Laurenti, A., Jacovitti, G.: ‘Multiple feature based multiscale image enhancement’, Proc. DSP, 2002, 2, pp. 931934.
    17. 17)
      • 17. Poursaberi, A., Yanushkevich, S.N.: ‘Modified multiscale vesselness filter for facial feature detection’. Proc. CCECE, Canada, 2012.
    18. 18)
      • 18. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: ‘Multiscale vessel enhancement filtering’. Proc. MICCAI,(LNCS), 1998, pp. 130137.
    19. 19)
      • 19. Lajevardi, S., Hussain, Z.: ‘Feature extraction for facial expression recognition based on hybrid face regions’, Adv. Electr. Comput. Eng., 2009, 9, (3), pp. 6367 (doi: 10.4316/aece.2009.03012).
    20. 20)
      • 20. Poursaberi, A., Ahmadi Noubari, H., Yanushkevich, S.N.: ‘Gauss–Laguerre wavelet textural feature fusion with geometrical information for facial expression identification’, Eurasip J. Image and Video Process., 2012, 2012, pp. 17 (doi: 10.1186/1687-5281-2012-17).
    21. 21)
      • 21. Jacovitti, G., Neri, A.: ‘Multiscale image features analysis with circular harmonic wavelets’. Proc. of SPIE 2569, Wavelets Applications: In Signal and Image Processing III, 1995, pp. 363372.
    22. 22)
      • 22. Deng, H., Zhu, J., Lyu, M.R., King, I.: ‘Two-stage multi-class AdaBoost for facial expression recognition’. Proc. IJCNN, 2007, pp. 30053010.
    23. 23)
      • 23. Zhan, Y., Ye, J., Niu, D., Cao, P.: ‘Facial expression recognition based on Gabor wavelet transformation and elastic templates matching’. Proc. Image and Graphics, 2002, pp. 254257.
    24. 24)
      • 24. Wang, P.S.P., (Ed.): ‘Pattern recognition, machine intelligence and biometrics’ (HEP and Springer, 2011).
    25. 25)
      • 25. Wang, P.S.P., (Ed.): ‘Intelligent pattern recognition and machine vision’ (King-Sun Fu Memorial Book, River Pub.Co., Denmark, 2010).
    26. 26)
      • 26. Sohail, A., Bhattacharya, P.: ‘Classification of facial expressions using k-nearest neighbor classifier’. Proc. Vision Computer Graphics Collaboration Techniques, 2007, pp. 555566.
    27. 27)
      • 27. Fujimasa, I., Chinzei, T., Saito, I.: ‘Converting far infrared image information to other physiological data’, IEEE Eng. Med. Biol. Mag., 2000, 19, (3), pp. 7176 (doi: 10.1109/51.844383).
    28. 28)
      • 28. Ng, E.Y.K., Muljo, W., Wong, B.S.: ‘Study of facial skin and aural temperature’, IEEE Eng. Med. Biol. Mag., May 2006, 25, pp. 6874 (doi: 10.1109/MEMB.2006.1636353).
    29. 29)
      • 29. Pavlidis, I., Levine, J.: ‘Thermal image analysis for polygraph testing’, IEEE Eng. Med. Biol. Mag., 2002, 21, (6), pp. 5664 (doi: 10.1109/MEMB.2002.1175139).
    30. 30)
      • 30. Sugimoto, Y., Yoshitomi, Y., Tomita, S.: ‘A method for detecting transitions of emotional states using a thermal facial image based on a synthesis of facial expressions’, Robot. Auton. Syst., 2000, 31, pp. 147160 (doi: 10.1016/S0921-8890(99)00104-9).
    31. 31)
      • 31. Prokoski, F.J., Riedel, R.B.: ‘Infrared identification of faces and body parts’, in Jain, A., Bolle, R., Pankanti, S. (Eds.): ‘Biometrics: personal identification in networked society’, (Kluwer, 1999), pp. 191212.
    32. 32)
      • 32. Tsumura, N., Ojima, N., Sato, K., et al: ‘Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin’, ACM Trans. Graph., 2003, 22, (3), pp. 770779 (doi: 10.1145/882262.882344).
    33. 33)
      • 33. Ng, E.Y.K., Kaw, G.J.L., Chang, W.M.: ‘Analysis of IR thermal imager for mass blind fever screening’, Microvasc. Res., 2004, 68, pp. 104109 (doi: 10.1016/j.mvr.2004.05.003).
    34. 34)
      • 34. Chen, X.: ‘PCA-based face recognition in infrared imagery: baseline and comparative studies’. Workshop on Analysis and Modeling of Faces and Gestures, April 2003, pp. 127134.
    35. 35)
      • 35. Hermosilla, G., Ruiz-del-Solar, J., Verschae, R., Correa, M.: ‘A comparative study of thermal face recognition methods in unconstrained environments’, Pattern Recognit., 2012, 45, (7), pp. 24452459 (doi: 10.1016/j.patcog.2012.01.001).
    36. 36)
      • 36. Buddharaju, P., Pavlidis, I., Kakadiaris, I.: ‘Face recognition in the thermal infrared spectrum’, CVPR, 2004, 8, pp. 133138.
    37. 37)
      • 37. Buddharaju, P., Pavlidis, I., Tsiamyrtzis, I., Bazakos, I.: ‘Physiology-based face recognition in the thermal infrared spectrum’, IEEE Trans. PAMI, 2007, 29, (4), pp. 613626 (doi: 10.1109/TPAMI.2007.1007).
    38. 38)
      • 38. Arandjelovic, O., Hammoud, R.: ‘Multi-Sensory face biometric fusion for Personal Identification’. CVPRW, June 2006.
    39. 39)
      • 39. Vana, J., Mracek, S., Poursaberi, A., Yanushkevich, S.N., Drahansky, M.: ‘Applying fusion in thermal face recognition’. BIOSIG, Germany, September 2012.
    40. 40)
      • 40. Dutch, D.: ‘Infrared facial image analysisDiploma project, HEFT/Biometric Technologies Laboratory (University of Calgary, 2011).
    41. 41)
      • 41. Lee, S.W., Wang, P.S.P., Yanushkevich, S.N.: ‘Reconstruction based on photometric stereo’, J. IJPRAI, 2008, 22, (3), pp. 389410.
    42. 42)
      • 42. Jacovitti, G., Neri, A.: ‘Multiscale image features analysis with circular harmonic wavelets’, Proc. SPIE, 1995, 2569, (1), pp. 363374 (doi: 10.1117/12.217592).
    43. 43)
      • 43. Royal, R.F., Schutt, S.R.: ‘The gentle art of interviewing and interrogation: a professional manual and guide’ (Prentice-Hall, 1976).
    44. 44)
      • 44. Lynos, M., Akamatsu, S., Kamachi, M., Gyoba, J.: ‘Coding facial expressions with Gabor wavelets’. Proc. FG, 1998, pp. 200206.
    45. 45)
      • 45. Kanade, T., Cohen, J.F., Tian, Y.: ‘Comprehensive database for facial expression analysis’. Proc. FG, 2000, pp. 4653.
    46. 46)
      • 46. Pantic, M., Valstar, M.F., Rademaker, R., Maat, L.: ‘Web-based database for facial expression analysis’. Proc. ICME, 2005, pp. 317321.
    47. 47)
      • 47. Lynos, M., Budynek, J., Akamatsu, S.: ‘Automatic classification of single facial images’, IEEE Trans. PAMI, 1999, 21, pp. 13571362 (doi: 10.1109/34.817413).
    48. 48)
      • 48. Deng, H.B., Jin, L.W., Zhen, L.X., Huang, I.C.: ‘A new facial expression recognition method based on local gabor filter bank and PCA plus LDA’, Int. J. Inf. Technol., 2005, 11, (11), pp. 8696.
    49. 49)
      • 49. Zhi, R., Ruan, Q.: ‘Facial expression recognition based on two dimensional discriminant locality preserving projections’, Neuro Comput., 2008, pp. 17301734.
    50. 50)
      • 50. Kotsia, I., Pitas, I.: ‘Facial expression recognition in image sequences using geometric deformation features and support vector machines’, IEEE Trans. Image Process., 2007, 16, (1), pp. 172187 (doi: 10.1109/TIP.2006.884954).
    51. 51)
      • 51. Zafeiriou, S., Pitas, I.: ‘Discriminant graph structures for facial expression recognition’, IEEE Trans. Multimed., 2008, 10, (8), pp. 15281540 (doi: 10.1109/TMM.2008.2007292).
    52. 52)
      • 52. Wang, J., Yin, L.: ‘Static topographic modeling for facial expression recognition and analysis’, Comput. Vis. Image Underst., 2007, 108, pp. 1934 (doi: 10.1016/j.cviu.2006.10.011).
    53. 53)
      • 53. Guo, Y., Zhao, G., Pietikäinen, M.: ‘Dynamic facial expression recognition using longitudinal facial expression atlases’, ECCV, 2012, 2, pp. 631644.
    54. 54)
      • 54. Equinox, Multimodal face database. http://www.equinoxsensors.com/products/HID.html (accessed May 2012).
    55. 55)
      • 55. Flynn, P.J., Bowyer, K.W., Phillips, P.J.: ‘Assessment of time dependency in face recognition: an initial study’. Audio and Video-Based Biometric Person Authentication, 2003, pp. 4451.
    56. 56)
      • 56. Yanushkevich, S.N., Stoica, A., Shmerko, V.P., Popel, D.V.: ‘Biometric Inverse Problems’ (CRC Press/Taylor & Francis Group, 2005).
    57. 57)
      • 57. Tonouchi, M.: ‘Cutting-edge terahertz technology’, Nat. Photonics, 2007, 1, (2), pp. 97105 (doi: 10.1038/nphoton.2007.3).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2012.0065
Loading

Related content

content/journals/10.1049/iet-bmt.2012.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address