Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems
- Author(s): David Pereira Coutinho 1, 2 ; Hugo Silva 1 ; Hugo Gamboa 3 ; Ana Fred 1, 4 ; Mário Figueiredo 1, 4
-
-
View affiliations
-
Affiliations:
1:
Instituto de Telecomunicações, 1049-001Lisboa, Portugal;
2: Department of Electronics, Telecommunications and Computer Engineering, Instituto Superior de Engenharia de Lisboa, 1959-007Lisboa, Portugal;
3: Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516Caparica, Portugal;
4: Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001Lisboa, Portugal
-
Affiliations:
1:
Instituto de Telecomunicações, 1049-001Lisboa, Portugal;
- Source:
Volume 2, Issue 2,
June 2013,
p.
64 – 75
DOI: 10.1049/iet-bmt.2012.0055 , Print ISSN 2047-4938, Online ISSN 2047-4946
The electrocardiogram (ECG) is a non-invasive and widely used technique for cardiac electrophysiological assessment. Although the ECG has traditionally only been used for functional diagnostic and evaluation, several advances in electrophysiological sensing have made available robust signal acquisition devices, particularly suited for ambulatory conditions, widening its range of applications. In particular, recent work has shown the potential of the ECG as a biometric trait, both for human identification and authentication. This study sets the ground for an ECG-based real-time biometric system. The authors describe an experimental setup and the evaluation of new fiducial and non-fiducial approaches, including data acquisition, signal processing, feature extraction and analysis and classification methodologies, showing the applicability of the ECG as a real-time biometric. Performance evaluation was done in clinical-grade ECG recording from 51 healthy control individuals (of a publicly available benchmark dataset) as well as on data collected from 26 healthy volunteers performing computer activities without any posture or motion limitations, thus simulating a regular computer usage scenario.
Inspec keywords: signal detection; data acquisition; biometrics (access control); performance evaluation; bioelectric phenomena; real-time systems; feature extraction; electrocardiography; authorisation
Other keywords: human identification; signal processing; nonfiducial approach; noninvasive technique; ECG-based real-time biometric system; human authentication; feature extraction; robust signal acquisition devices; ambulatory conditions; feature analysis methodologies; functional evaluation; performance evaluation; computer activities; electrophysiological sensing; data acquisition; healthy control individuals; cardiac electrophysiological assessment; functional diagnostics; computer usage scenario; classification methodologies; clinical-grade ECG recording
Subjects: Data security; Signal detection; Digital signal processing; Bioelectric signals
References
-
-
1)
-
4. Medina, L., Fred, A.: ‘Genetic algorithm for clustering temporal data – application to the detection of stress from ECG signals’. Proc. Second Int. Conf. Agents and Artificial Intelligence (ICAART), 2010, pp. 135–142.
-
-
2)
-
11. Kwang, G., Yap, R., Sim, T., Ramnath, R.: ‘An usability study of continuous biometrics authentication’. 2009(LNCS, 5558), pp. 828–837.
-
-
3)
-
7. Wang, Y., Agrafioti, F., Hatzinakos, D., Plataniotis, K.N.: ‘Analysis of human electrocardiogram for biometric recognition’, EURASIP J. Adv. Signal Process., 2008, DOI: 10.1155/2003/148658.
-
-
4)
-
9. Geradts, Z., Ruifrok, A.: ‘Extracting forensic evidence from biometric devices’, Proc. SPIE, 2003, 5108, pp. 181–188.
-
-
5)
-
6. Boulgouris, N.V., Plataniotis, K.N., Micheli-Tzanakou, E. (Eds.): ‘Biometrics: theory, methods, and applications’ (Wiley-IEEE Press, 2009).
-
-
6)
-
18. Penders, J., Gyselinckx, B., Vullers, R., et al: ‘Human + + : emerging technology for body area networks’. Very Large Scale Integration, 2006 IFIP International Conference, 2006, pp. 175–180, DOI: 10.1109/VLSISOC.2006.313229.
-
-
7)
-
21. Lourenço, R., Leite, P., Lourenço, A., Silva, H., Fred, A., Coutinho, D.P.: ‘Experimental apparatus for finger ECG biometrics’. Proc. Int. Conf. Biomedical Electronics and Devices, 2012, pp. 196–200.
-
-
8)
-
13. Shepherd, S.: ‘Continuous authentication by analysis of keyboard typing characteristics’. Proc. European Convention on Security and Detection, 2000, pp. 111–114.
-
-
9)
-
42. Wübbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R., Elster, C.: ‘Verification of humans using the electrocardiogram’, Pattern Recognit. Lett., 2007, 28, (10), pp. 1172–1175 (doi: 10.1016/j.patrec.2007.01.014).
-
-
10)
-
23. Silva, H., Lourenço, A., Lourenço, R., Leite, P., Coutinho, D.P., Fred, A.: ‘Study and evaluation of a single differential sensor design based on electro-textile electrodes for ECG biometrics applications’. Proc. IEEE Sensors Conf., 2011.
-
-
11)
-
24. Shen, T.: ‘Biometric identity verification based on electrocardiogram’. PhD thesis, University of Wisconsin, 2005.
-
-
12)
-
39. Ziv, J., Lempel, A.: ‘A universal algorithm for sequential data compression’, IEEE Trans. Inf. Theory, 1977, 23, (3), pp. 337–343 (doi: 10.1109/TIT.1977.1055714).
-
-
13)
-
31. Gustafsson, F.: ‘Determining the initial states in forward-backward filtering’, IEEE Trans. Signal Process., 1996, 44, (4), pp. 988–992 (doi: 10.1109/78.492552).
-
-
14)
-
35. Duskalov, I., Dotsinsky, I., Christov, I.: ‘Developments in ECG acquisition, preprocessing, parameter measurement, and recording’, IEEE Eng. Med. Biol. Mag., 1998, 17, (2), pp. 50–58 (doi: 10.1109/51.664031).
-
-
15)
-
32. Kunzmann, U., von Wagner, G., Schochlin, J., Bolz, A.: ‘Parameter extraction of ECG signals in real-time’, Biomed. Tech. Biomed. Eng., 2002, 47, pp. 875–878 (doi: 10.1515/bmte.2002.47.s1b.875).
-
-
16)
-
43. Agrafioti, F., Bui, F.M., Hatzinakos, D.: ‘Medical biometrics: the perils of ignoring time dependency’. Proc. Third IEEE Int. Conf. Biometrics: Theory, Applications and Systems, 2009, pp. 358–363.
-
-
17)
-
44. Agrafioti, F., Gao, J., Hatzinakos, D.: ‘Heart biometrics: theory, methods and applications, biometrics: Biometrics’ Biometics: Book 3 (InTech, 2011).
-
-
18)
-
36. Rodríguez, M., Ayala, A., Rodríguez, S., Rosa, F., Díaz-González, M.: ‘Application of the Max–Lloyd quantizer for ECG compression in diving mammals’, Comput. Methods Programs Biomed., 2004, 73, pp. 13–21 (doi: 10.1016/S0169-2607(03)00016-6).
-
-
19)
-
12. Azzini, A., Marrara, S.: ‘Impostor users discovery using a multimodal biometric continuous authentication fuzzy system’. 2008(LNCS, 5178), pp. 371–378.
-
-
20)
-
20. Silva, H., Gamboa, H., Viegas, V., Fred, A.: ‘Wireless physiologic data acquisition platform’. Proc. 2005 Conf. Telecommunications, 2005.
-
-
21)
-
28. Coutinho, D.P., Fred, A., Figueiredo, M.: ‘One-lead ECG-based personal identification using Ziv–Merhav cross parsing’. Proc. Int. Conf. Pattern Recognition (ICPR), 2010, pp. 3858–3861.
-
-
22)
-
19. Cunha, J., Cunha, B., Xavier, W., Ferreira, N., Pereira, A.: ‘Vital-jacket: a wearable wireless vital signs monitor for patients’ mobility’. Proc. Avantex Symp., 2007.
-
-
23)
-
8. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al: ‘PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals’, Circulation, 2000, 101, (23), pp. e215–e220 (doi: 10.1161/01.CIR.101.23.e215).
-
-
24)
-
27. Silva, H., Gamboa, H., Fred, A.: ‘Applicability of lead V2 ECG measurements in biometrics’. Proc. Med-e-Tel, 2007.
-
-
25)
-
38. Ziv, J., Merhav, N.: ‘A measure of relative entropy between individual sequences with application to universal classification’, IEEE Trans. Inf. Theory, 1993, 39, pp. 1270–1279 (doi: 10.1109/18.243444).
-
-
26)
-
1. Chung, E.: ‘Pocketguide to ECG diagnosis’ (Blackwell Publishing, 2000).
-
-
27)
-
34. Wrublewski, T., Sun, Y., Beyer, J.: ‘Real-time early detection of R waves of the ECG signals’, IEEE Eng. Med. Biol. Soc., 1989, 1, pp. 38–39.
-
-
28)
-
5. Ross, A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics (international series on biometrics)’ (Springer-Verlag, New York, Inc., 2006).
-
-
29)
-
17. Shen, T.W., Tompkins, W.J., Hu, Y.H.: ‘One-lead ECG for identity verification’. Proc. Second Joint Conf. IEEE Engineering in Medicine and Biology Society and the 24th Annual Conf. and the Annual Fall Meeting of the Biomedical Engineering Society (EMBS/BMES'02), Houston, Texas, USA, October 2002, pp. 62–63.
-
-
30)
-
14. Niinuma, K., Jain, A.K.: ‘Continuous user authentication using temporal information’, Proc. SPIE, 2010, 7667, (1), p. 76670L.
-
-
31)
-
16. Israel, S., Irvine, J., Cheng, A., Wiederhold, M., Wiederhold, B.: ‘ECG to identify individuals’, Pattern Recognit., 2005, 38, (1), pp. 133–142 (doi: 10.1016/j.patcog.2004.05.014).
-
-
32)
-
30. Gamboa, H., Silva, H., Fred, A.: ‘HiMotion project’. Technical Report 20070731, IT – Instituto de Telecomunicações, 2007.
-
-
33)
-
45. Gao, J., Agrafioti, F., Mohammadzade, H., Hatzinakos, D.: ‘ECG for blind identity verification in distributed systems’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May 2011, pp. 1916–1919.
-
-
34)
-
3. Chiu, C.C., Chuang, C.M., Hsu, C.Y.: ‘A novel personal identity verification approach using a discrete wavelet transform of the ECG signal’. Proc. Int. Conf. Multimedia and Ubiquitous Engineering, 2008, pp. 201–206.
-
-
35)
-
10. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: ‘Impact of artificial ‘gummy’ fingers on fingerprint systems’, Proc. SPIE, 2002, 4677, pp. 275–289.
-
-
36)
-
40. Benedetto, D., Caglioti, E., Loreto, V.: ‘Language trees, zipping’, Phys. Rev. Lett., 2002, 88, (4) (doi: 10.1103/PhysRevLett.88.048702).
-
-
37)
-
33. Suppappola, S., Sun, Y.: ‘A comparison of three QRS detection algorithms using the AHA ECG database’, IEEE Eng. Med. Biol. Soc., 1991, 13, pp. 586–587.
-
-
38)
-
26. Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: ‘Wavelet distance measure for person identification using electrocardiograms’, IEEE Trans. Instrum. Meas., 2008, 57, (2), pp. 248–253 (doi: 10.1109/TIM.2007.909996).
-
-
39)
-
29. Riera, A., Dunne, S., Cester, I., Ruffini, G.: ‘STARFAST: a wireless wearable EEG/ECG biometric system based on the ENOBIO sensor’. Proc. Fifth pHealth Workshop on Wearable Micro and Nanosystems for Personalised Health, 2008.
-
-
40)
-
2. Biel, L., Petterson, O., Phillipson, L., Wide, P.: ‘ECG analysis: a new approach in human identification’, IEEE Trans. Instrum. Meas., 2001, 50, (3), pp. 808–812 (doi: 10.1109/19.930458).
-
-
41)
-
37. Cerra, D., Datcu, M.: ‘Algorithmic cross-complexity and relative complexity’. Proc. 2009 Data Compression Conf. (DCC'09), Washington, DC, USA, 2009, pp. 342–351.
-
-
42)
-
25. So, H.H., Chan, K.L.: ‘Development of QRS detection method for real-time ambulatory cardiac monitor’, IEEE Eng. Med. Biol. Soc., 1997, 1, pp. 289–292.
-
-
43)
-
22. Leonov, V.: ‘Wireless body-powered electrocardiography shirt’. Proc. Smart Systems Integration European Conf., 2009.
-
-
44)
-
15. Jain, A., Flynn, P., Ross, A.: ‘Handbook of biometrics’ (Springer, 2007).
-
-
45)
-
41. Coutinho, D.P., Figueiredo, M.: ‘Information theoretic text classification using the Ziv–Merhav method’. Proc. Second Iberian Conf. Pattern Recognition and Image Analysis (IbPRIA’ 2005), Estoril, Portugal, 2005.
-
-
1)