Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems

Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The electrocardiogram (ECG) is a non-invasive and widely used technique for cardiac electrophysiological assessment. Although the ECG has traditionally only been used for functional diagnostic and evaluation, several advances in electrophysiological sensing have made available robust signal acquisition devices, particularly suited for ambulatory conditions, widening its range of applications. In particular, recent work has shown the potential of the ECG as a biometric trait, both for human identification and authentication. This study sets the ground for an ECG-based real-time biometric system. The authors describe an experimental setup and the evaluation of new fiducial and non-fiducial approaches, including data acquisition, signal processing, feature extraction and analysis and classification methodologies, showing the applicability of the ECG as a real-time biometric. Performance evaluation was done in clinical-grade ECG recording from 51 healthy control individuals (of a publicly available benchmark dataset) as well as on data collected from 26 healthy volunteers performing computer activities without any posture or motion limitations, thus simulating a regular computer usage scenario.


    1. 1)
      • 1. Chung, E.: ‘Pocketguide to ECG diagnosis’ (Blackwell Publishing, 2000).
    2. 2)
      • 2. Biel, L., Petterson, O., Phillipson, L., Wide, P.: ‘ECG analysis: a new approach in human identification’, IEEE Trans. Instrum. Meas., 2001, 50, (3), pp. 808812 (doi: 10.1109/19.930458).
    3. 3)
      • 3. Chiu, C.C., Chuang, C.M., Hsu, C.Y.: ‘A novel personal identity verification approach using a discrete wavelet transform of the ECG signal’. Proc. Int. Conf. Multimedia and Ubiquitous Engineering, 2008, pp. 201206.
    4. 4)
      • 4. Medina, L., Fred, A.: ‘Genetic algorithm for clustering temporal data – application to the detection of stress from ECG signals’. Proc. Second Int. Conf. Agents and Artificial Intelligence (ICAART), 2010, pp. 135142.
    5. 5)
      • 5. Ross, A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics (international series on biometrics)’ (Springer-Verlag, New York, Inc., 2006).
    6. 6)
      • 6. Boulgouris, N.V., Plataniotis, K.N., Micheli-Tzanakou, E. (Eds.): ‘Biometrics: theory, methods, and applications’ (Wiley-IEEE Press, 2009).
    7. 7)
      • 7. Wang, Y., Agrafioti, F., Hatzinakos, D., Plataniotis, K.N.: ‘Analysis of human electrocardiogram for biometric recognition’, EURASIP J. Adv. Signal Process., 2008, DOI: 10.1155/2003/148658.
    8. 8)
      • 8. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al: ‘PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals’, Circulation, 2000, 101, (23), pp. e215e220 (doi: 10.1161/01.CIR.101.23.e215).
    9. 9)
      • 9. Geradts, Z., Ruifrok, A.: ‘Extracting forensic evidence from biometric devices’, Proc. SPIE, 2003, 5108, pp. 181188.
    10. 10)
      • 10. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: ‘Impact of artificial ‘gummy’ fingers on fingerprint systems’, Proc. SPIE, 2002, 4677, pp. 275289.
    11. 11)
      • 11. Kwang, G., Yap, R., Sim, T., Ramnath, R.: ‘An usability study of continuous biometrics authentication’. 2009(LNCS, 5558), pp. 828837.
    12. 12)
      • 12. Azzini, A., Marrara, S.: ‘Impostor users discovery using a multimodal biometric continuous authentication fuzzy system’. 2008(LNCS, 5178), pp. 371378.
    13. 13)
      • 13. Shepherd, S.: ‘Continuous authentication by analysis of keyboard typing characteristics’. Proc. European Convention on Security and Detection, 2000, pp. 111114.
    14. 14)
      • 14. Niinuma, K., Jain, A.K.: ‘Continuous user authentication using temporal information’, Proc. SPIE, 2010, 7667, (1), p. 76670L.
    15. 15)
      • 15. Jain, A., Flynn, P., Ross, A.: ‘Handbook of biometrics’ (Springer, 2007).
    16. 16)
      • 16. Israel, S., Irvine, J., Cheng, A., Wiederhold, M., Wiederhold, B.: ‘ECG to identify individuals’, Pattern Recognit., 2005, 38, (1), pp. 133142 (doi: 10.1016/j.patcog.2004.05.014).
    17. 17)
      • 17. Shen, T.W., Tompkins, W.J., Hu, Y.H.: ‘One-lead ECG for identity verification’. Proc. Second Joint Conf. IEEE Engineering in Medicine and Biology Society and the 24th Annual Conf. and the Annual Fall Meeting of the Biomedical Engineering Society (EMBS/BMES'02), Houston, Texas, USA, October 2002, pp. 6263.
    18. 18)
      • 18. Penders, J., Gyselinckx, B., Vullers, R., et al: ‘Human + + : emerging technology for body area networks’. Very Large Scale Integration, 2006 IFIP International Conference, 2006, pp. 175180, DOI: 10.1109/VLSISOC.2006.313229.
    19. 19)
      • 19. Cunha, J., Cunha, B., Xavier, W., Ferreira, N., Pereira, A.: ‘Vital-jacket: a wearable wireless vital signs monitor for patients’ mobility’. Proc. Avantex Symp., 2007.
    20. 20)
      • 20. Silva, H., Gamboa, H., Viegas, V., Fred, A.: ‘Wireless physiologic data acquisition platform’. Proc. 2005 Conf. Telecommunications, 2005.
    21. 21)
      • 21. Lourenço, R., Leite, P., Lourenço, A., Silva, H., Fred, A., Coutinho, D.P.: ‘Experimental apparatus for finger ECG biometrics’. Proc. Int. Conf. Biomedical Electronics and Devices, 2012, pp. 196200.
    22. 22)
      • 22. Leonov, V.: ‘Wireless body-powered electrocardiography shirt’. Proc. Smart Systems Integration European Conf., 2009.
    23. 23)
      • 23. Silva, H., Lourenço, A., Lourenço, R., Leite, P., Coutinho, D.P., Fred, A.: ‘Study and evaluation of a single differential sensor design based on electro-textile electrodes for ECG biometrics applications’. Proc. IEEE Sensors Conf., 2011.
    24. 24)
      • 24. Shen, T.: ‘Biometric identity verification based on electrocardiogram’. PhD thesis, University of Wisconsin, 2005.
    25. 25)
      • 25. So, H.H., Chan, K.L.: ‘Development of QRS detection method for real-time ambulatory cardiac monitor’, IEEE Eng. Med. Biol. Soc., 1997, 1, pp. 289292.
    26. 26)
      • 26. Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: ‘Wavelet distance measure for person identification using electrocardiograms’, IEEE Trans. Instrum. Meas., 2008, 57, (2), pp. 248253 (doi: 10.1109/TIM.2007.909996).
    27. 27)
      • 27. Silva, H., Gamboa, H., Fred, A.: ‘Applicability of lead V2 ECG measurements in biometrics’. Proc. Med-e-Tel, 2007.
    28. 28)
      • 28. Coutinho, D.P., Fred, A., Figueiredo, M.: ‘One-lead ECG-based personal identification using Ziv–Merhav cross parsing’. Proc. Int. Conf. Pattern Recognition (ICPR), 2010, pp. 38583861.
    29. 29)
      • 29. Riera, A., Dunne, S., Cester, I., Ruffini, G.: ‘STARFAST: a wireless wearable EEG/ECG biometric system based on the ENOBIO sensor’. Proc. Fifth pHealth Workshop on Wearable Micro and Nanosystems for Personalised Health, 2008.
    30. 30)
      • 30. Gamboa, H., Silva, H., Fred, A.: ‘HiMotion project’. Technical Report 20070731, IT – Instituto de Telecomunicações, 2007.
    31. 31)
      • 31. Gustafsson, F.: ‘Determining the initial states in forward-backward filtering’, IEEE Trans. Signal Process., 1996, 44, (4), pp. 988992 (doi: 10.1109/78.492552).
    32. 32)
      • 32. Kunzmann, U., von Wagner, G., Schochlin, J., Bolz, A.: ‘Parameter extraction of ECG signals in real-time’, Biomed. Tech. Biomed. Eng., 2002, 47, pp. 875878 (doi: 10.1515/bmte.2002.47.s1b.875).
    33. 33)
      • 33. Suppappola, S., Sun, Y.: ‘A comparison of three QRS detection algorithms using the AHA ECG database’, IEEE Eng. Med. Biol. Soc., 1991, 13, pp. 586587.
    34. 34)
      • 34. Wrublewski, T., Sun, Y., Beyer, J.: ‘Real-time early detection of R waves of the ECG signals’, IEEE Eng. Med. Biol. Soc., 1989, 1, pp. 3839.
    35. 35)
      • 35. Duskalov, I., Dotsinsky, I., Christov, I.: ‘Developments in ECG acquisition, preprocessing, parameter measurement, and recording’, IEEE Eng. Med. Biol. Mag., 1998, 17, (2), pp. 5058 (doi: 10.1109/51.664031).
    36. 36)
      • 36. Rodríguez, M., Ayala, A., Rodríguez, S., Rosa, F., Díaz-González, M.: ‘Application of the Max–Lloyd quantizer for ECG compression in diving mammals’, Comput. Methods Programs Biomed., 2004, 73, pp. 1321 (doi: 10.1016/S0169-2607(03)00016-6).
    37. 37)
      • 37. Cerra, D., Datcu, M.: ‘Algorithmic cross-complexity and relative complexity’. Proc. 2009 Data Compression Conf. (DCC'09), Washington, DC, USA, 2009, pp. 342351.
    38. 38)
      • 38. Ziv, J., Merhav, N.: ‘A measure of relative entropy between individual sequences with application to universal classification’, IEEE Trans. Inf. Theory, 1993, 39, pp. 12701279 (doi: 10.1109/18.243444).
    39. 39)
      • 39. Ziv, J., Lempel, A.: ‘A universal algorithm for sequential data compression’, IEEE Trans. Inf. Theory, 1977, 23, (3), pp. 337343 (doi: 10.1109/TIT.1977.1055714).
    40. 40)
      • 40. Benedetto, D., Caglioti, E., Loreto, V.: ‘Language trees, zipping’, Phys. Rev. Lett., 2002, 88, (4) (doi: 10.1103/PhysRevLett.88.048702).
    41. 41)
      • 41. Coutinho, D.P., Figueiredo, M.: ‘Information theoretic text classification using the Ziv–Merhav method’. Proc. Second Iberian Conf. Pattern Recognition and Image Analysis (IbPRIA’ 2005), Estoril, Portugal, 2005.
    42. 42)
      • 42. Wübbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R., Elster, C.: ‘Verification of humans using the electrocardiogram’, Pattern Recognit. Lett., 2007, 28, (10), pp. 11721175 (doi: 10.1016/j.patrec.2007.01.014).
    43. 43)
      • 43. Agrafioti, F., Bui, F.M., Hatzinakos, D.: ‘Medical biometrics: the perils of ignoring time dependency’. Proc. Third IEEE Int. Conf. Biometrics: Theory, Applications and Systems, 2009, pp. 358363.
    44. 44)
      • 44. Agrafioti, F., Gao, J., Hatzinakos, D.: ‘Heart biometrics: theory, methods and applications, biometrics: BiometricsBiometics: Book 3 (InTech, 2011).
    45. 45)
      • 45. Gao, J., Agrafioti, F., Mohammadzade, H., Hatzinakos, D.: ‘ECG for blind identity verification in distributed systems’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May 2011, pp. 19161919.

Related content

This is a required field
Please enter a valid email address