Ensemble systems and cancellable transformations for multibiometric-based identification

Ensemble systems and cancellable transformations for multibiometric-based identification

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The concept of cancellable biometrics has been introduced as a way to overcome privacy concerns surrounding the management of biometric data. The goal is to transform a biometric trait into a new but revocable representation for enrolment and identification/verification. Thus, if compromised, a new representation of original biometric data can be generated. In addition, multi-biometric systems are increasingly being deployed in various biometric-based applications because of their advantages over uni-biometric systems. In this study, the authors specifically investigate the use of ensemble systems and cancellable transformations for the multi-biometric context, and the authors use as examples two different biometric modalities (fingerprint and handwritten signature) separately and in the multi-modal context (multi-biometric). The datasets to be used in this analysis were FVC2004 (fingerprint verification competition) for fingerprint and an in-house database for signature. To increase the effectiveness of the proposed ensemble systems, two feature selection (FS) methods will be used to distribute the attributes among the individual classifiers of an ensemble, increasing diversity and performance of such systems. As a result of this analysis, they will observe that the use of a cancellable transformation in the multi-biometric dataset increased accuracy level for the ensemble systems, mainly when using FS methods.


    1. 1)
      • 1. Jain, A.K., Nandakumar, K., Nagar, A.: ‘Biometric template security’. Eurasip Journal on Advances in Signal Processing, 2008, article id 579416, pp. 117, DOI:10.1155/2008/579416.
    2. 2)
      • 2. Lee, C., Kim, J.: ‘Cancelable fingerprint templates using minutiae-based bit-strings’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 236246 (doi: 10.1016/j.jnca.2009.12.011).
    3. 3)
      • 3. Nagar, A., Nandakumar, K., Jain, A.K.: ‘A hybrid biometric cryptosystem for securing fingerprint minutiae templates’, Pattern Recogn. Lett., 2010, 31, pp. 733741 (doi: 10.1016/j.patrec.2009.07.003).
    4. 4)
      • 4. Takahashi, K., Hitachi, S.: ‘Generating provably secure cancelable fingerprint templates based on correlation-invariant random filtering’. IEEE Conf. Biometrics: Theory, Applications, and Systems (BTAS), 2009, pp. 16.
    5. 5)
      • 5. Boult, T.: ‘Robust distance measures for face-recognition supporting revocable biometrics token’. Proc. Seventh Int. Conf. Autom. Face and Gesture Recognition, 2006, pp. 560566.
    6. 6)
      • 6. Kanade, S., Petrovska-Delacretaz, D., Dorizzi, B.: ‘Cancelable iris biometrics and using error correcting codes to reduce variability in biometric data’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2009, pp. 120127.
    7. 7)
      • 7. Maiorana, E., Martinez-Diaz, M., Campisi, P., Ortega-Garcia, J., Neri, A.: ‘Template protection for hmm-based on-line signature authentication’. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), 2008, pp. 16.
    8. 8)
      • 8. Maiorana, E., Campisi, P., Ortega-Garcia, J., Neri, A.: ‘Cancelable biometrics for hmm-based signature recognition’. IEEE Int. Conf. Biometrics: Theory, Applications and Systems (BTAS), 2008, pp. 16.
    9. 9)
      • 9. Ross, A.A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics’, Ed. International Series on Biometrics (Springer, 2006, 1st edn.).
    10. 10)
      • 10. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: ‘Privacy-aware biometrics: design and implementation of a multimodal verification system’. Computer Security Applications Conf., Annual, 2008, pp. 130139.
    11. 11)
      • 11. Fu, B., Yang, S., Li, J., Hu, D.: ‘Multibiometric cryptosystem: model structure and performance analysis’, IEEE Trans. Inf. Forensics Sec., 2009, 4, (4), pp. 867882 (doi: 10.1109/TIFS.2009.2033227).
    12. 12)
      • 12. Kelkboom, E.J.C., Zhou, X., Breebaart, J., Veldhuis, R.N.S., Busch, C.: ‘Multi-algorithm fusion with template protection’. Proc. Third IEEE Int. Conf. Biometrics: Theory, Applications and Systems, ser. (BTAS'09), Piscataway, NJ, USA, 2009, pp. 222229. Available at
    13. 13)
      • 13. Sutcu, Y., Li, Q., Memon, N.: ‘Secure biometric templates from fingerprint-face features’. IEEE Conf. Computer Vision and Pattern Recognition, 2007 (CVPR ’07), June 2007, pp. 16.
    14. 14)
      • 14. Nagar, A., Nandakumar, K., Jain, A.: ‘Multibiometric cryptosystems based on feature-level fusion’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (1), pp. 255268 (doi: 10.1109/TIFS.2011.2166545).
    15. 15)
      • 15. Canuto, A.M.P., Pintro, F., Neto, A.F., Fairhurst, M.C.: ‘Enhancing performance of cancellable fingerprint biometrics using classifier ensembles’. Brazilian Symp. Neural Networks, 2010, vol. 0, pp. 5560.
    16. 16)
      • 16. Canuto, A.M.P., Fairhurst, M.C., Pintro, F., Junior, J.C.X., Neto, A.F., Gonçalves, L.M.G.: ‘Classifier ensembles and optimization techniques to improve the performance of cancellable fingerprint’, Int. J. Hybrid Intell. Syst., 2011, 8, (3), pp. 143154.
    17. 17)
      • 17. Hao, F., Anderson, R., Daugman, J.: ‘Combining cryptography with biometrics effectively’, IEEE Trans. Comput., 2006, 55, (9), pp. 10811088 (doi: 10.1109/TC.2006.138).
    18. 18)
      • 18. Xu, W., Cheng, M.: ‘Cancelable voiceprint template based on chaff-points-mixture method’. Int. Conf. Computational Intelligence and Security (2008. CIS ’08), 2008, vol. 2, pp. 263266.
    19. 19)
      • 19. Rathgeb, C., Uhl, A.: ‘A survey on biometric cryptosystems and cancelable biometrics’, EURASIP J. Inf. Sec., 2011, 2011, (1), pp. 3 (doi: 10.1186/1687-417X-2011-3).
    20. 20)
      • 20. Nandakumar, K., Jain, A.K., Pankanti, S.: ‘Fingerprint-based fuzzy vault: implementation and performance’, IEEE Tran. Inf. Forensics Sec., 2007, 2, (4), pp. 744757. Available at 1109/TIFS.2007.908165=0pt (doi: 10.1109/TIFS.2007.908165).
    21. 21)
      • 21. Nagar, A., Jain, A.: ‘On the security of non-invertible fingerprint template transforms’. Proc. First IEEE Int. Workshop on Information Forensics and Security, 2009, pp. 8185.
    22. 22)
      • 22. Ratha, N., Chikkerur, S., Connell, J., Bolle, R.: ‘Generating cancelable fingerprint templates’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (4), pp. 561572 (doi: 10.1109/TPAMI.2007.1004).
    23. 23)
      • 23. Farooq, F., Bolle, R., Jea, T.-Y., Ratha, N.: ‘Anonymous and revocable fingerprint recognition’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2007, pp. 17.
    24. 24)
      • 24. Yip, W., Goh, A., Ngo, D., Teoh, A.: ‘Generation of replaceable cryptographic keys from dynamic handwritten signatures’. Int. Conf. on Biometrics Advances in Biometrics, 2005, (LNCS, 3832), pp. 509515.
    25. 25)
      • 25. Lumini, A., Nanni, L.: ‘An improved biohashing for human authentication’, Pattern Recognit., 2007, 40, (3), pp. 10571065 (doi: 10.1016/j.patcog.2006.05.030).
    26. 26)
      • 26. van der Veen, M., Kevenaar, T., Schrijen, G.-J., Akkermans, T.H., Zuo, F.: ‘Face biometrics with renewable templates’, in Delp, E.J., Wong, P.W. (Eds.) (SPIE, 2006), 6072, (1), pp. 60720J.
    27. 27)
      • 27. Maiorana, E., Campisi, P., Neri, A.: ‘User adaptive fuzzy commitment for signature template protection and renewability’, J. Electron. Imaging, 2008, 17, (1), pp. 011011 (doi: 10.1117/1.2885239).
    28. 28)
      • 28. Nanni, L., Maiorana, E., Lumini, A., Campisi, P.: ‘Combining local, regional and global matchers for a template protected on-line signature verification system’, Expert Syst. Appl., 2010, 37, (5), pp. 36763684 (doi: 10.1016/j.eswa.2009.10.023).
    29. 29)
      • 29. Maiorana, E., Campisi, P., Neri, A.: ‘Template protection for dynamic time warping based biometric signature authentication’. Int. Conf. Digital Signal Processing (ser. DSP'09), 2009, pp. 526531.
    30. 30)
      • 30. Nandakumar, K., Jain, A.K.: ‘Multibiometric template security using fuzzy vault’. IEEE Int. Conf. Biometrics: Theory, Applications, and Systems, 2008.
    31. 31)
      • 31. Rathge, C., Uhl, A., Wild, P.: ‘Reliability-balanced feature level fusion for fuzzy commitment scheme’. Proc. 2011 Int. Joint Conf. Biometrics (ser. IJCB ’11), Washington, DC, USA, 2011, pp. 17. Available at
    32. 32)
      • 32. Canuto, A.M.P., Abreu, M., Oliveira, L., Xavier, J.C.Jr., Santos, A.: ‘Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles’, Pattern Recognit. Lett., 2007, 28, (4), pp. 472486 (doi: 10.1016/j.patrec.2006.09.001).
    33. 33)
      • 33. Kuncheva, L.I.: ‘Combining pattern classifiers: methods and algorithms’ (Wiley, 2004).
    34. 34)
      • 34. Lee, M., Boroczky, L., Sungur-Stasik, K., et al: ‘A two-step approach for feature selection and classifier ensemble construction in computer-aided diagnosis’. Proc. 21st IEEE Int. Symp. on Computer-Based Medical Systems (CBMS), 2008, pp. 548553.
    35. 35)
      • 35. Oliveira, L.S., Morita, M., Sabourin, R.: ‘Feature selection for ensembles applied to handwriting recognition’, Int. J. Doc. Anal. Recognit., 2006, 8, pp. 262279 (doi: 10.1007/s10032-005-0013-6).
    36. 36)
      • 36. Laura E Santana, A.M.P.C., Silva, L.: ‘Bio-inspired meta-heuristic as feature selector in ensemble systems: a comparative analysis’. Accepted to Int. Joint Conf. Neural Networks (IJCNN), 2011.
    37. 37)
      • 37. Holland, J.H.: ‘Adaptation in natural and artificial systems’ (MIT Press, Cambridge, MA, USA, 1992).
    38. 38)
      • 38. Hua, J., Tembe, W.D., Dougherty, E.R.: ‘Performance of feature-selection methods in the classification of high-dimension data’, Pattern Recognit., 2009, 42, pp. 409424 (doi: 10.1016/j.patcog.2008.08.001).
    39. 39)
      • 39. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. IEEE Int. Conf. Neural Networks, November/December 1995, vol. 4, pp. 19421948.
    40. 40)
      • 40. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (Wiley, 2001, 2nd edn.).
    41. 41)
      • 41. Quinlan, J.: ‘C4.5: programs for machine learning’ (Morgan Kaufmann Publishers, 1993).
    42. 42)
      • 42. Haykin, S.: ‘Neural networks – a comprehensive foundation’ (Prentice-Hall, 1999).
    43. 43)
      • 43. Pintro, F.: ‘Proposing a modified version of a cancellable transformation for fingerprint data (in Portuguese)’. Technical Report, Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, 2010.
    44. 44)
      • 44. Witten, I.H., Frank, E.: ‘Data mining: practical machine learning tools and techniques’ (Elsevier, 2005, 2nd edn.).
    45. 45)
      • 45. Demsar, J.: ‘Statistical comparisons of classifiers over multiple data sets’, J. Mach. Learn. Res., 2006, 7, pp. 130.
    46. 46)
      • 46. Chen, P., Popovich, P.: ‘Correlation: parametric and nonparametric measures’ (Sage Publications, 2002, 1st edn.).
    47. 47)
      • 47. Fingerprint Verification Competition, 2004. Available at
    48. 48)
      • 48. NIST Fingerprint Image 2: A user guide to. Available at
    49. 49)
      • 49. Khan, N.Y., Javed, M.Y., Khattak, N., Chang, U.M.Y.: ‘Optimization of core point detection in fingerprints’. Proc. Ninth Conf. Australian Pattern Recognition Soc on Digital Image Computing and Applications, 2007, pp. 260266.
    50. 50)
      • 50. Guest, R.: ‘The repeatability of signatures’. Proc. Ninth Int. Workshop on Frontiers in Handwriting Recognition (IWFHR 2004), 2004, pp. 492497.
    51. 51)
      • 51. Correa, E.S., Freitas, A.A., Johnson, C.G.: ‘Particle swarm for attribute selection in Bayesian classification: an application to protein function prediction’, J. Artif. Evol. Appl., 2008, 2008, pp. 112 (doi: 10.1155/2008/876746).

Related content

This is a required field
Please enter a valid email address