Comprehensive analysis of spectral minutiae for vein pattern recognition

Comprehensive analysis of spectral minutiae for vein pattern recognition

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Similar to biometric fingerprint recognition, characteristic minutiae points – here end and branch points – can be extracted from skeletonised vein images to distinguish individuals. An approach to extract those vein minutiae and to transform them into a fixed-length, translation and scale invariant representation where rotations can be easily compensated is presented in this study. The proposed solution based on spectral minutiae is evaluated against other comparison strategies on three different datasets of wrist and palm dorsal vein samples. The authors' analysis shows a competitive biometric performance while producing features that are compatible with state-of-the-art template protection systems. In addition, a modified and more distinctive, but not transform or rotation invariant, representation is proposed and evaluated.


    1. 1)
      • R. Bolle , S. Pankanti . (1998) Biometrics: personal identification in networked society: personal identification in networked society.
    2. 2)
    3. 3)
    4. 4)
      • Derakhshani, R., Ross, A., Crihalmeanu, S.: `A new biometric modality using Conjunctival vasculature', Proc. Artificial Neural Networks in Engineering, November 2006.
    5. 5)
      • Hartung, D., Busch, C.: `Why vein recognition needs privacy protection', Int. Conf. IIH/MSP, 2009, p. 1090–1095.
    6. 6)
      • Breebaart, J., Busch, C., Grave, J., Kindt, E.: `A reference architecture for biometric template protection based on pseudo identities', BIOSIG, 2008, p. 25–38.
    7. 7)
    8. 8)
      • Juels, A., Wattenberg, M.: `A fuzzy commitment scheme', ACM Conf. on Computer and Communications Security, 1999, p. 28–36.
    9. 9)
      • Tuyls, P., Goseling, J.: `Capacity and examples of template-protecting biometric authentication systems', Biometric Authentication, 2004, p. 158–170, (LNCS, 3087).
    10. 10)
      • Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.-J., Bazen, A.M., Veldhuis, R.N.J.: `Practical biometric authentication with template protection', Fifth Int. Conf. on Audio- and Video-Based Personal Authentication (AVBPA), July 2005, Rye Brook, New York, p. 436–446, (LNCS, 3546).
    11. 11)
      • Kumar, A., Prathyusha, K.V.: `Personal authentication using hand vein triangulation and knuckle shape', Trans. Image Process., 2009, 18, p. 2127–2136.
    12. 12)
    13. 13)
      • Mirmohamadsadeghi, L., Drygajlo, A.: `Palm vein recognition with local binary patterns and local derivative patterns', Int. Joint Conf. on Biometrics (IJCB), 2011, October 2011, p. 1–6.
    14. 14)
      • Hartung, D., Olsen, M.A., Xu, H., Busch, C.: `Spectral minutiae for vein pattern recognition', Int. Joint Conf. on Biometrics (IJCB), 2011, October 2011, 4, p. 1–7.
    15. 15)
    16. 16)
      • Struc, V., Pavesic, N.: `Illumination invariant face recognition by non-local smoothing', Proc. BIOID Multicomm, September 2008.
    17. 17)
      • J. Weickert . Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comenianae , 33 - 50
    18. 18)
      • Pascual, S., Uriarte-Antonio, J.E., Sanchez-Reillo, J.R., Lorenz, M.: `Capturing hand or wrist vein images for biometric authentication using low-cost devices', Sixth Int. Conf. IIH/MSP (IIH-MSP), 2010, October 2010, p. 318–322.
    19. 19)
      • Frangi, R.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: `Multiscale vessel enhancement filtering', Medical Image Computing and Computer-Assisted Interventation, 1998, p. 130–137.
    20. 20)
      • Telea, A., van Wijk, J.J.: `An augmented fast marching method for computing skeletons and centerlines', Joint Eurographics – IEEE TCVG Symp. on Vizualization, 2002.
    21. 21)
      • Olsen, M.A., Hartung, D., Busch, C., Larsen, R.: `Convolution approach for feature detection in topological skeletons obtained from vascular patterns', IEEE Symp. Ser. Computational Intelligence 2011, April 2011.
    22. 22)
      • Xu, H., Veldhuis, R., Kevenaar, T., Akkermans, A., Bazen, A.: `Spectral minutiae: A fixed-length representation of a minutiae set', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, 2008, CVPRW '08, June 2008, p. 1–6.
    23. 23)
      • Xu, H., Veldhuis, R.N.: `Complex spectral minutiae representation for fingerprint recognition', 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, CVPRW, June 2010, p. 1–8.
    24. 24)
      • T.M. Cover , J.A. Thomas . (2006) Elements of information theory.
    25. 25)
      • L. Wang , G. Leedham . (2007) Computational intelligence and security, Watershed algorithmic approach for gray-scale skeletonization in thermal vein pattern biometrics.
    26. 26)
      • Dubuisson, M.-P., Jain, A.: `A modified Hausdorff distance for object matching', Proc. 12th IAPR Int. Conf. on Pattern Recognition, 1994 Vol. 1 – Conference A: Computer Vision Image Processing, October 1994, 1, p. 566–568.
    27. 27)
      • Chen, H., Lu, G., Wang, R.: `A new palm vein method based on ICP algorithm', Int. Conf. on Information Systems, November 2009.
    28. 28)

Related content

This is a required field
Please enter a valid email address