access icon openaccess Ageing behaviour of a polyethylene blend: influence of chemical defects and morphology on charge transport

The properties of novel cable insulation systems will rely critically upon the morphology of the material. Here, a blend of high and low-density polyethylene (PE) was processed in order to generate three sets of samples with different morphologies. The influence of thermo-oxidative ageing at 120°C was then considered. The resulting chemical changes included the introduction of unsaturation and oxygen-containing groups and were determined by antioxidant consumption and oxygen permeability. Such chemical defects were found to be concentrated in the fraction of each system that was molten at 120°C and, consequently, served to inhibit recrystallisation following ageing. The resulting spatial distribution of charge trapping sites was therefore strongly dependent on morphology. The electrical conductivity of each system varied non-monotonically with ageing: short times reduced the conductivity; a rapid increase in conductivity over five orders of magnitude occurred beyond a critical ageing threshold. Despite the pronounced structural differences between the morphologically distinct sets of samples, all exhibited comparable conductivity values beyond this threshold, implying that while charge transport is strongly influenced by chemical factors, crystallinity is relatively unimportant. This experimental finding appears at odds with theoretical studies of the electronic states in crystalline and amorphous PE.

Inspec keywords: power cable insulation; oxidation; electrical conductivity; polyethylene insulation; ageing; recrystallisation

Other keywords: oxygen-containing groups; cable insulation systems; antioxidant consumption; polyethylene blend; charge transport; electrical conductivity; chemical defects; chemical morphology; low-density polyethylene; amorphous polyethylene; oxygen permeability; thermo-oxidative ageing

Subjects: Organic insulation; Surface treatment (semiconductor technology); Power cables

References

    1. 1)
      • 31. Sayers, P.W., Lewis, T.J., Llewellyn, J.P., et al: ‘Investigation of the structural changes in LDPE and XLPE induced by high electrical stress’. Int. Conf. on Dielectric Materials, Measurements and Applications, Edinburgh, UK, 2002, pp. 403407.
    2. 2)
      • 46. Ghorbani, H., Christen, T., Carlen, M., et al: ‘Long-term conductivity decrease of polyethylene and polypropylene insulation materials’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 14851493.
    3. 3)
      • 33. Vaughan, A.S., Stevens, G.C.: ‘On crystallization, morphology and radiation effects in poly (ether ketone)’, Polymer, 1995, 36, pp. 15311540.
    4. 4)
      • 50. Karlsson, M.E., Xu, X., Hillborg, H., et al: ‘Lamellae-controlled electrical properties of polyethylene – morphology, oxidation and effects of antioxidant on the DC conductivity’, RSC Adv., 2020, 10, pp. 46984709.
    5. 5)
      • 18. Green, C.D., Vaughan, A.S., Stevens, G.C., et al: ‘Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 639648.
    6. 6)
      • 32. Hosier, I.L., Vaughan, A.S., Swingler, S.G.: ‘On the effects of morphology and molecular composition on the electrical strength of polyethylene blends’, J. Polym. Sci. B, Polym. Phys., 2000, 38, pp. 23092322.
    7. 7)
      • 54. Meunier, M., Quirke, N.: ‘Molecular modelling of electron trapping in polymer insulators’, J. Chem. Phys., 2000, 113, pp. 369376.
    8. 8)
      • 14. Meunier, M., Quirke, N., Aslanides, A.: ‘Molecular modeling of electron traps in polymer insulators: chemical defects and impurities’, J. Chem. Phys., 2001, 115, pp. 28762881.
    9. 9)
      • 39. Khabbaz, F., Albertsson, A.C., Karlsson, S.: ‘Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation’, Polym. Degrad. Stab., 1999, 63, pp. 127138.
    10. 10)
      • 2. Gustafsson, A., Saltzer, M., Farkas, A., et al: ‘The new 525 kV extruded HVDC cable system: world's most powerful extruded cable system’, ABB Grid Systems, 2014.
    11. 11)
      • 13. Laurent, C., Teyssedre, G.: ‘Energetics of charge transport in insulating polymers’. Int. Symp. on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 2017, pp. 39.
    12. 12)
      • 38. Chmelař, J., Pokorný, R., Schneider, P., et al: ‘Free and constrained amorphous phases in polyethylene: interpretation of 1H NMR and SAXS data over a broad range of crystallinity’, Polymer, 2015, 58, pp. 189198.
    13. 13)
      • 35. Li, H., Li, J., Ma, Y., et al: ‘The role of thermo-oxidative aging at different temperatures on the crystal structure of crosslinked polyethylene’, J. Mater. Sci., Mater. Electron., 2018, 29, pp. 36963703.
    14. 14)
      • 48. Hosier, I.L., Vaughan, A.S., Quirke, N.: ‘Electrical conductivity of waxes as model systems for polyethylene: role of water’, J. Appl. Polym. Sci., 2019, 137, p. 48765.
    15. 15)
      • 16. Andersson, M.G., Hynynen, J., Andersson, M.R., et al: ‘Highly insulating polyethylene blends for high-voltage direct-current power cables’, ACS Macro Lett., 2017, 6, pp. 7882.
    16. 16)
      • 22. Hosier, I.L., Vaughan, A.S., Swingler, S.G.: ‘Structure–property relationships in polyethylene blends: the effect of morphology on electrical breakdown strength’, J. Mater. Sci., 1997, 32, pp. 45234531.
    17. 17)
      • 4. Ulf, N., Annika, S., Alfred, C.: ‘The invention relates to a cable comprising a semiconductive layer and an insulation layer with improved DC electrical properties’. Austria Patent EP3190152A1, 2017.
    18. 18)
      • 42. Olley, R.H., Bassett, D.C., Vaughan, A.S., et al: ‘Delineating water trees in cross-linked polyethylene: a new technique’, J. Mater. Sci., 1992, 27, pp. 51925198.
    19. 19)
      • 25. Veitmann, M., Jumeau, R., Bourson, P., et al: ‘Understanding and control of high temperature oxidation flaws of low-density poly(ethylene) with Raman spectroscopy’, Int. J. Spectrosc., 2014, 2014, pp. 19.
    20. 20)
      • 17. Montanari, G.C., Seri, P., Lei, X., et al: ‘Next generation polymeric high voltage direct current cables – a quantum leap needed?’, IEEE Electr. Insul. Mag., 2018, 34, pp. 2431.
    21. 21)
      • 34. Vaughan, A.S., Hosier, I.L.: ‘The effect of dibenzylidene sorbitol on the crystallization behaviour of polyethylene’, J. Mater. Sci., 2008, 43, pp. 29222928.
    22. 22)
      • 19. Tantipattarakul, S., Vaughan, A.S., Andritsch, T.: ‘On the influence of chemical defects and structural factors on charge transport and failure in polyethylene’, IEEE Trans. Dielectr. Electr. Insul., 2019, 27, pp. 259266.
    23. 23)
      • 10. Crine, J.-P.: ‘Influence of high electrical fields on ageing and polarization properties of polyethylene’, J. Polym. Int., 2002, 51, pp. 11591163.
    24. 24)
      • 15. Wang, W., Tanaka, Y., Takada, T.: ‘Space charge of polyethylene and electronic structure analysis of trapping site using common chemical groups’, Sens. Mater., 2017, 29, pp. 12231231.
    25. 25)
      • 43. Green, C.D., Vaughan, A.S., Stevens, G.C., et al: ‘Recyclable power cable comprising a blend of slow-crystallized polyethylenes’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, pp. 19.
    26. 26)
      • 9. Hamouya, M., Mahir, A., Idrissi, M.C.E.: ‘Natural ageing of stabilized and unstabilized LDPE films used as greenhouses covering materials: ATR-FTIR and SEM analysis’, Int. J. Res. Eng. Technol., 2014, 03, pp. 1219.
    27. 27)
      • 51. McAloon, B.J., Perkins, P.G.: ‘Semi-empirical LCAOMO theory for infinite systems. Part 1.—application to polyethylene, polyacetylene and polyvinylchloride’, J. Chem. Soc., Faraday Trans. 2, 1972, 68, pp. 11211132.
    28. 28)
      • 20. Tantipattarakul, S., Vaughan, A.S., Andritsch, T.: ‘On the influence of morphology and chemical defects on charge transport dynamics in polyethylene: thermal ageing and concentration gradient’, J. Phys. D, Appl. Phys., 2019, 52, p. 395302.
    29. 29)
      • 11. Wang, Y., MacKernan, D., Cubero, D., et al: ‘Single electron states in polyethylene’, J. Chem. Phys., 2014, 140, p. 154902.
    30. 30)
      • 21. Bassett, D.C., Hodge, A.M., Olley, R.H.: ‘On the morphology of melt-crystallized polyethylene II. Lamellae and their crystallization conditions’, Proc. R. Soc. Lond. A, Math. Phys. Sci., 1981, 377, pp. 3960.
    31. 31)
      • 40. Takahashi, S., Kiran, E.: ‘Development of ring-banded spherulitic morphologies and formation of radially oriented nano-pores in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) during crystallization in CO2’, J. Supercrit. Fluids, 2015, 96, pp. 359368.
    32. 32)
      • 7. Rapp, G., Tireau, J., Bussiere, P.-O., et al: ‘Influence of the physical state of a polymer blend on thermal ageing’, J. Polym. Degrad. Stab., 2019, 163, pp. 161173.
    33. 33)
      • 45. Lau, K.Y., Vaughan, A.S., Chen, G., et al: ‘Polyethylene/silica nanocomposites: absorption current and the interpretation of SCLC’, J. Phys. D, Appl. Phys., 2016, 49, p. 295305.
    34. 34)
      • 41. Olley, R.H.: ‘Selective etching of polymeric materials’, Sci. Prog., 1986, 70, pp. 1743.
    35. 35)
      • 29. Winslow, F.H., Hellman, M.Y., Matreyek, W., et al: ‘Autoxidation semicrystalline polyethylene’, Polym. Eng. Sci., 1966, 6, pp. 273278.
    36. 36)
      • 37. Zhao, B., Zikry, M.A.: ‘Oxidation-induced failure in semi-crystalline organic thin films’, Int. J. Solids Struct., 2017, 109, pp. 7283.
    37. 37)
      • 49. Guo, T.C., Guo, W.W.: ‘A transient-state theory of dielectric relaxation and the Curie-von Schweidler law’, J. Phys. C, Solid State Phys., 1983, 16, pp. 19551960.
    38. 38)
      • 3. Bergelin, P., Jeroense, M., Quist, T., et al: ‘640 kV extruded HVDC cable system: world's most powerful extruded cable system’, NKT, 2017.
    39. 39)
      • 12. Cubero, D., Quirke, N., Coker, D.F.: ‘Electronic states for excess electrons in polyethylene compared to long-chain alkanes’, Chem. Phys. Lett., 2003, 370, pp. 2125.
    40. 40)
      • 8. Hamzah, M., Khenfouch, M., Rjeb, A., et al: ‘Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: a spectroscopic investigation’, J. Phys., Conf. Ser., 2018, 984, p. 012010.
    41. 41)
      • 30. Carlsson, D.J., Lacoste, J.: ‘A critical comparison of methods for hydroperoxide measurement in oxidized polyolefins’, Polym. Degrad. Stab., 1991, 32, pp. 377386.
    42. 42)
      • 27. ASTM: ‘ASTM d257-14: standard test methods for DC resistance or conductance of insulating materials’, 2014.
    43. 43)
      • 1. ‘ULTRANET – The energy transition in Germany-Siemens supplies converters technology to Amprion and TransnetBW for successful grid expansion’. Available at https://www.siemens.com/press/pool/de/feature/2016/energymanagement/2016-04-ultranet/presentation-ultranet-e.pdf, accessed 06 August 2018.
    44. 44)
      • 47. Shaw, A.V., Vaughan, A.S., Andritsch, T.: ‘The effect of organoclay loading and matrix morphology on charge transport and dielectric breakdown in an ethylene-based polymer blend’, J. Mater. Sci., 2019, 54, pp. 1301713028.
    45. 45)
      • 55. Cubero, D., Quirke, N.: ‘Computer simulations of localized small polarons in amorphous polyethylene’, J. Chem. Phys., 2004, 120, pp. 77727778.
    46. 46)
      • 23. Audouin, L., Langlois, V., Verdu, J., et al: ‘Role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects’, J. Mater. Sci., 1994, 29, pp. 569583.
    47. 47)
      • 56. Boukezzi, L., Rondot, S., Jbara, O., et al: ‘A time-resolved current method and TSC under vacuum conditions of SEM: trapping and detrapping processes in thermal aged XLPE’, Nucl. Instrum. Methods B, 2017, 394, pp. 126133.
    48. 48)
      • 53. Moyassari, A., Unge, M., Hedenqvist, M.S., et al: ‘First-principle simulations of electronic structure in semicrystalline polyethylene’, J. Chem. Phys., 2017, 146, p. 204901.
    49. 49)
      • 44. Keith, H.D., Padden, F.J.: ‘Banding in polyethylene and other spherulites’, Macromolecules, 1996, 29, pp. 77767786.
    50. 50)
      • 5. Peacock, A.: ‘Handbook of polyethylene: structures, properties, and applications’ (Marcel Dekker Inc., USA, 2000).
    51. 51)
      • 36. Mattozzi, A., Neway, B., Hedenqvist, M.S., et al: ‘Morphological interpretation of n-hexane diffusion in polyethylene’, Polymer, 2005, 46, pp. 929938.
    52. 52)
      • 28. Anandakumaran, K., Stonkus, D.J.: ‘Assessment of oxidative thermal degradation of crosslinked polyethylene and ethylene propylene rubber cable insulation’, Polym. Eng. Sci., 1992, 32, pp. 13861393.
    53. 53)
      • 26. Teckoe, J., Bassett, D.C., Olley, R.H.: ‘Aspects of the morphology and melting behavior of constrained polyethylene fibers’, Polym. J., 1999, 31, pp. 765771.
    54. 54)
      • 52. Süle, P., Kurth, S., Van Doren, V.E.: ‘Orbital dependent exchange-only methods for periodic systems’, Phys. Rev. B, 1999, 60, pp. 54295439.
    55. 55)
      • 24. Lambert, J.B., Gronert, S., Shurvell, H.F., et al: ‘Organic structural spectroscopy’ (Pearson Prentice-Hall, USA, 2011, 2nd edn.).
    56. 56)
      • 6. Bracco, P., Costa, L., Luda, M.P., et al: ‘A review of experimental studies of the role of free-radicals in polyethylene oxidation’, Polym. Degrad. Stab., 2018, 155, pp. 6783.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0402
Loading

Related content

content/journals/10.1049/hve.2019.0402
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading