access icon openaccess Repetitively pulsed gas discharges: memory effect and discharge mode transition

Repetitively pulsed gas volume and dielectric surface discharges have gained growing attention because of peculiar and exciting physics phenomena, high efficiency, high reactivity, and potential to obtain conventionally unachievable plasma properties. Nevertheless, incomplete understanding of fundamental mechanisms renders the repetitively pulsed discharge far less predictable and controllable, where the inherent memory effect and the discharge mode transition are universal challenges. In this topical review, the authors will explore the macroscopic characteristics of the gas gap breakdown and the surface flashover, state-of-the-art mechanisms and dominant agents of discharge memory effects, operation regimes and transitions of the discharge mode, and how waveform parameters affect the pulsed discharge properties. Challenges and potential approaches for further understanding the memory effect and the discharge mode transition in the repetitively pulsed discharge are discussed.

Inspec keywords: flashover; surface discharges; glow discharges; electric breakdown; discharges (electric)

Other keywords: gas discharges; exciting physics phenomena; conventionally unachievable plasma properties; dielectric surface discharges; pulsed discharge properties; repetitively pulsed discharge; gas volume; discharge memory effects; inherent memory effect; discharge mode transition; peculiar physics phenomena; gas gap breakdown

Subjects: Electric discharges; Numerical approximation and analysis; Plasma temperature and density

References

    1. 1)
      • 97. Zubarev, N., Ivanov, S.: ‘Mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres’, Plasma Phys. Rep., 2018, 44, (4), pp. 445452.
    2. 2)
      • 26. Shao, T., Sun, G., Yan, P., et al: ‘Experimental study of polarity dependence in repetitive nanosecond-pulse breakdown’, Chin. Phys., 2007, 16, (3), pp. 778783.
    3. 3)
      • 123. Wang, P., Andrea, C., Gian, M.: ‘The influence of repetitive square wave voltage parameters on enameled wire endurance’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 12761284.
    4. 4)
      • 50. Hartmann, G., Gallimberti, I.: ‘The influence of metastable molecules on the streamer progression’, J. Phys. D, Appl. Phys., 1975, 8, (6), pp. 670680.
    5. 5)
      • 68. Yurgelenas, Y., Wagner, H.: ‘A computational model of a barrier discharge in air at atmospheric pressure: the role of residual surface charges in microdischarge formation’, J. Phys. D, Appl. Phys., 2006, 39, (18), pp. 40314043.
    6. 6)
      • 88. Babaeva, N., Naidis, G.: ‘Modeling of streamer dynamics in atmospheric-pressure air: influence of rise time of applied voltage pulse on streamer parameters’, IEEE Trans. Plasma Sci., 2016, 44, (6), pp. 899902.
    7. 7)
      • 65. Li, M., Li, C., Zhan, H., et al: ‘Effect of surface charge trapping on dielectric barrier discharge’, Appl. Phys. Lett., 2008, 92, (3), p. 031503.
    8. 8)
      • 48. Allen, N., Mikropoulos, P.: ‘Surface profile effect on streamer propagation and breakdown in air’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (5), pp. 812817.
    9. 9)
      • 117. Panchenko, A., Tarasenko, V., Beloplotov, D., et al: ‘Diffusive discharges in SF6 and mixtures of SF6 with H2, formed by nanosecond voltage pulses in non-uniform electric field’, High Volt., 2018, 3, (4), pp. 316322.
    10. 10)
      • 21. Shao, T., Sun, G., Yan, P., et al: ‘Breakdown phenomena in nitrogen due to repetitive nanosecond-pulses’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (4), pp. 813819.
    11. 11)
      • 90. Naidis, G., Tarasenko, V., Babaeva, N., et al: ‘Subnanosecond breakdown in high-pressure gases’, Plasma Sources Sci. Technol., 2018, 27, (1), p. 013001.
    12. 12)
      • 25. Zhang, C., Shao, T., Yan, P., et al: ‘Nanosecond-pulse gliding discharges between point-to-point electrodes in open air’, Plasma Sources Sci. Technol., 2014, 23, (3), p. 035004.
    13. 13)
      • 61. Starikovskiy, A., Pancheshnyi, S., Rakitin, A.: ‘Periodic pulse discharge self-focusing and streamer-to-spark transition in under-critical electric field’. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, US, January 2011, p. 1271.
    14. 14)
      • 42. Okabe, S.: ‘Phenomena and mechanism of electric charges on spacers in gas insulated switchgears’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (1), pp. 4652.
    15. 15)
      • 87. Ono, R., Nakagawa, Y., Oda, T.: ‘Effect of pulse width on the production of radicals and excited species in a pulsed positive corona discharge’, J. Phys. D, Appl. Phys., 2011, 44, (48), p. 485201.
    16. 16)
      • 31. Stone, G., van Heeswijk, R., Bartnikas, R.: ‘Investigation of the effect of repetitive voltage surges on epoxy insulation’, IEEE Trans. Energy Convers., 1992, 7, (4), pp. 754760.
    17. 17)
      • 59. Hayakawa, N., Hatta, K., Okabe, S., et al: ‘Streamer and leader discharge propagation characteristics leading to breakdown in electronegative gases’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (4), pp. 842849.
    18. 18)
      • 35. Mankowski, J., Dickens, J., Kristiansen, M.: ‘High voltage subnanosecond breakdown’, IEEE Trans. Plasma Sci., 1998, 26, (3), pp. 874881.
    19. 19)
      • 84. Raizer, Y.: ‘Gas discharge physics’ (Springer-Verlag, Berlin, Heidelberg, Germany, 1991).
    20. 20)
      • 11. Shao, T., Wang, R., Zhang, C., et al: ‘Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications’, High Volt., 2018, 3, (1), pp. 1420.
    21. 21)
      • 45. Soloviev, V., Krivtsov, V., Shcherbanev, S., et al: ‘Evolution of nanosecond surface dielectric barrier discharge for negative polarity of a voltage pulse’, Plasma Sources Sci. Technol., 2016, 26, (1), p. 014001.
    22. 22)
      • 100. Babaeva, N., Naidis, G.: ‘Simulation of subnanosecond streamers in atmospheric-pressure air: effects of polarity of applied voltage pulse’, Phys. Plasmas, 2016, 23, (8), p. 083527.
    23. 23)
      • 77. Adamovich, I.V., Butterworth, T., Orriere, T., et al: ‘Nanosecond second harmonic generation for electric field measurements with temporal resolution shorter than laser pulse duration’, J. Phys. D, Appl. Phys., 2020, 53, (14), p. 145201.
    24. 24)
      • 81. Tholin, F., Bourdon, A.: ‘Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure’, J. Phys. D, Appl. Phys., 2013, 46, (36), p. 365205.
    25. 25)
      • 108. Rusterholtz, D., Lacoste, D., Stancu, G., et al: ‘Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges’, J. Phys. D, Appl. Phys., 2013, 46, (46), p. 464010.
    26. 26)
      • 5. Ju, Y., Sun, W.: ‘Plasma assisted combustion: dynamics and chemistry’, Prog. Energy Combust., 2015, 48, pp. 2183.
    27. 27)
      • 69. Murooka, Y., Takada, T., Hiddaka, K.: ‘Nanosecond surface discharge and charge density evaluation part I: review and experiments’, IEEE Electr. Insul. Mag., 2001, 17, (2), pp. 616.
    28. 28)
      • 104. Levko, D.: ‘Comparison of mechanisms of the plasma generation by nanosecond discharge at extremely high overvoltage’, J. Appl. Phys., 2018, 124, (16), p. 163302.
    29. 29)
      • 63. Höft, H., Kettlitz, M., Becker, M.M., et al: ‘Breakdown characteristics in pulsed-driven dielectric barrier discharges: influence of the pre-breakdown phase due to volume memory effects’, J. Phys. D, Appl. Phys., 2014, 47, (46), p. 465206.
    30. 30)
      • 24. Naidis, G.: ‘Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses’, J. Phys. D, Appl. Phys., 2008, 41, (23), p. 234017.
    31. 31)
      • 20. Ran, H., Wang, J., Wang, T., et al: ‘Spacer flashover characteristics in SF6 under repetitive nanosecond pulses’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 11611167.
    32. 32)
      • 67. Yao, C., Chen, S., Chang, Z., et al: ‘Atmospheric pressure dielectric barrier discharge involving ion-induced secondary electron emission controlled by dielectric surface charges’, J. Phys. D, Appl. Phys., 2019, 52, (45), p. 455202.
    33. 33)
      • 46. Ren, M., Zhang, C., Dong, M., et al: ‘Partial discharges triggered by metal-particle on insulator surface under standard oscillating impulses in SF6 gas’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 30073018.
    34. 34)
      • 74. Simeni, M., Goldberg, B., Zhang, C., et al: ‘Electric field measurements in a nanosecond pulse discharge in atmospheric air’, J. Phys. D, Appl. Phys., 2017, 50, (18), p. 184002.
    35. 35)
      • 52. Bourdon, A., Bonaventura, Z., Celestin, S.: ‘Influence of the pre-ionization background and simulation of the optical emission of a streamer discharge in preheated air at atmospheric pressure between two point electrodes’, Plasma Sources Sci. Technol., 2010, 19, (3), p. 034012.
    36. 36)
      • 39. Liu, L., Li, X., Wen, T., et al: ‘Criteria and propagation processes of electrode-initiated and electrodeless-initiated discharge in SF6’, Phys. Plasmas, 2019, 26, (2), p. 023512.
    37. 37)
      • 57. Kazemi, M., Sugai, T., Tokuchi, A., et al: ‘Study of pulsed atmospheric discharge using solid-state LTD’, IEEE Trans. Plasma Sci., 2017, 45, (8), pp. 23232327.
    38. 38)
      • 94. Montijn, C., Ebert, U.: ‘Diffusion correction to the Raether-Meek criterion for the avalanche-to-streamer transition’, J. Phys. D, Appl. Phys., 2006, 39, (14), pp. 29792992.
    39. 39)
      • 32. Stone, G., Van Heeswijk, R., Bartnikas, R.: ‘Electrical aging and electroluminescence in epoxy under repetitive voltage surges’, IEEE Trans. Dielectr. Electr. Insul., 1992, 27, (2), pp. 233244.
    40. 40)
      • 3. Li, X., Yang, D., Yuan, H., et al: ‘Detection of trace heavy metals using atmospheric pressure glow discharge by optical emission spectra’, High Volt., 2019, 4, (3), pp. 228233.
    41. 41)
      • 1. Shintani, H.: ‘Gas plasma sterilization in microbiology: theory, applications, pitfalls and new perspectives’ (Caister Academic Press, Tokyo, Japan, 2016).
    42. 42)
      • 102. Levko, D., Arslanbekov, R., Kolobov, V.: ‘Modified Paschen curves for pulsed breakdown’, Phys. Plasmas, 2019, 26, (6), p. 064502.
    43. 43)
      • 73. Kai, W., Cheng, P., Yongpeng, M., et al: ‘Dynamic behavior of surface charge distribution during partial discharge sequences’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 612619.
    44. 44)
      • 113. Ito, T., Kanazawa, T., Hamaguchi, S.: ‘Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges’, Phys. Rev. Lett., 2011, 107, (6), p. 065002.
    45. 45)
      • 2. Wang, S., Li, S., Li, J., et al: ‘Interfacial bonding enhancement of the RTV recoating with sandwiched contaminant by plasma jet’, High Volt., 2019, 4, (3), pp. 345348.
    46. 46)
      • 47. Akishev, Y., Aponin, G., Balakirev, A., et al: ‘DBD surface streamer expansion described using nonlinear diffusion of the electric potential over the barrier’, J. Phys. D, Appl. Phys., 2013, 46, (46), p. 464014.
    47. 47)
      • 7. Yang, Z., Song, H., Wang, W., et al: ‘Thermal characterisation of dielectric barrier discharge plasma actuation driven by radio frequency voltage at low pressure’, High Volt., 2018, 3, (2), pp. 154160.
    48. 48)
      • 34. Martin, T.: ‘An empirical formula for gas switch breakdown delay’. 7th Pulsed Power Conf., Monterey, USA, June 1989, p. 73.
    49. 49)
      • 79. Shcherbanev, S., Ding, C., Starikovskaia, S., et al: ‘Filamentary nanosecond surface dielectric barrier discharge. Plasma properties in the filaments’, Plasma Sources Sci. Technol., 2019, 28, (6), p. 065013.
    50. 50)
      • 78. Ding, C., Khomenko, A., Shcherbanev, S., et al: ‘Filamentary nanosecond surface dielectric barrier discharge. Experimental comparison of the streamer-to-filament transition for positive and negative polarities’, Plasma Sources Sci. Technol., 2019, 28, (8), p. 085005.
    51. 51)
      • 121. Huiskamp, T.: ‘Nanosecond pulsed streamer discharges part I: generation, source-plasma interaction and energy-efficiency optimization’, Plasma Sources Sci. Technol., 2020, 29, (2), p. 023002Available at https://doi.org/10.1088/1361-6595/ab53c5.
    52. 52)
      • 95. Kawada, Y., Hosokawa, T.: ‘Observation of nanosecond-pulse breakdown of gas-insulated gaps by image converter camera’, J. Appl. Phys., 1990, 67, (3), pp. 12491252.
    53. 53)
      • 112. Levatter, J., Lin, S.: ‘Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures’, J. Appl. Phys., 1980, 51, (1), pp. 210222.
    54. 54)
      • 109. Hinterholzer, T., Boeck, W.: ‘Space-charge-stabilization in SF6’. 2001 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Kitchener, Canada, October 2001, pp. 392396.
    55. 55)
      • 27. Shao, T., Sun, G., Yan, P., et al: ‘Experimental study of similarity laws in gas breakdown with repetitive nanosecond pulses’, Jpn. J. Appl. Phys., 2007, 46, (2), pp. 803805.
    56. 56)
      • 12. Bruggeman, P., Iza, F., Brandenburg, R.: ‘Foundations of atmospheric pressure non-equilibrium plasmas’, Plasma Sources Sci. Technol., 2017, 26, (12), p. 123002.
    57. 57)
      • 37. Laghari, J.R.: ‘Spacer flashover in compressed gases’, IEEE Trans. Dielectr. Electr. Insul., 1985, EI-20, (1), pp. 8392.
    58. 58)
      • 89. Kawada, Y., Shamoto, S., Hosokawa, T.: ‘Nanosecond-pulse breakdown of gas-insulated gaps’, J. Appl. Phys., 1988, 63, (6), pp. 18771881.
    59. 59)
      • 58. Zeng, R., Zhuang, C., Yu, Z., et al: ‘Electric field step in air gap streamer discharges’, Appl. Phys. Lett., 2011, 99, (22), p. 221503.
    60. 60)
      • 51. Simek, M.: ‘Determination of N2(A3u+) metastable density produced by nitrogen streamers at atmospheric pressure: 2. Experimental verification’, Plasma Sources Sci. Technol., 2003, 12, (3), pp. 454463.
    61. 61)
      • 105. Popov, N.: ‘Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges’, Plasma Phys. Rep., 2001, 27, (10), pp. 886896.
    62. 62)
      • 33. Xie, Q., Ren, J., Huang, H., et al: ‘Aging characteristics of epoxy resin discharged by very fast transient overvoltage in SF6’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 11781188.
    63. 63)
      • 86. Li, J., Zhao, Z., Li, L., et al: ‘A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation’, Rev. Sci. Instrum., 2017, 88, (9), p. 093514.
    64. 64)
      • 106. Zhu, Y., Wu, Y., Cui, W., et al: ‘Numerical investigation of energy transfer for fast gas heating in an atmospheric nanosecond-pulsed DBD under different negative slopes’, J. Phys. D, Appl. Phys., 2013, 46, (49), p. 495205.
    65. 65)
      • 103. Levko, D.: ‘Mechanism of sub-nanosecond pulsed breakdown of pressurized nitrogen’, J. Appl. Phys., 2019, 126, (8), p. 083303.
    66. 66)
      • 18. Zhao, Z., Huang, D., Wang, Y., et al: ‘Volume and surface memory effects on evolution of streamer dynamics along gas/solid interface in high-pressure nitrogen under long-term repetitive nanosecond pulses’, Plasma Sources Sci. Technol., 2020, 29, (1), p. 015016.
    67. 67)
      • 111. Mesyats, G., Korolev, Y.: ‘High-pressure volume discharges in gas lasers’, Sov. Phys. Usp., 1986, 29, (1), pp. 5769.
    68. 68)
      • 82. Tholin, F., Bourdon, A.: ‘Influence of the external electrical circuit on the regimes of a nanosecond repetitively pulsed discharge in air at atmospheric pressure’, Plasma Phys. Control. Fusion, 2015, 57, (1), p. 014016.
    69. 69)
      • 22. Tholin, F., Bourdon, A.: ‘Simulation of the stable ‘quasi-periodic’ glow regime of a nanosecond repetitively pulsed discharge in air at atmospheric pressure’, Plasma Sources Sci. Technol., 2013, 22, (4), p. 045014.
    70. 70)
      • 43. Fujinami, H., Takuma, T., Yashima, M., et al: ‘Mechanism and effect of DC charge accumulation on SF6 gas insulated spacers’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 17651772.
    71. 71)
      • 70. Kumada, A., Okabe, S., Hidaka, K.: ‘Residual charge distribution of positive surface streamer’, J. Phys. D, Appl. Phys., 2009, 42, (9), p. 095209.
    72. 72)
      • 118. Takashima, K., Zuzeek, Y., Lempert, W., et al: ‘Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses’, Plasma Sources Sci. Technol., 2011, 20, (5), p. 055009.
    73. 73)
      • 9. Lu, X., Naidis, G., Laroussi, M., et al: ‘Guided ionization waves: theory and experiments’, Phys. Rep., 2014, 540, (3), pp. 123166.
    74. 74)
      • 99. Bratchikov, V., Gagarinov, K., Kostyrya, I., et al: ‘X-ray radiation from the volume discharge in atmospheric-pressure air’, Tech. Phys., 2007, 52, (7), pp. 856864.
    75. 75)
      • 19. Shao, T., Sun, G., Yan, P., et al: ‘An experimental investigation of repetitive nanosecond-pulse breakdown in air’, J. Phys. D, Appl. Phys., 2006, 39, (10), pp. 21922197.
    76. 76)
      • 120. Huang, B., Carbone, E., Takashima, K., et al: ‘The effect of the pulse repetition rate on the fast ionization wave discharge’, J. Phys. D, Appl. Phys., 2018, 51, (22), p. 225202.
    77. 77)
      • 60. MacGregor, S., Turnbull, S., Tuema, F., et al: ‘Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches’, IEEE Trans. Plasma Sci., 1997, 25, (2), pp. 110117.
    78. 78)
      • 17. Qi, F., Li, Y., Zhou, R., et al: ‘Uniform atmospheric pressure plasmas in a 7 mm air gap’, Appl. Phys. Lett., 2019, 115, (19), p. 194101.
    79. 79)
      • 28. Pai, D., Stancu, G., Lacoste, D., et al: ‘Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the glow regime’, Plasma Sources Sci. Technol., 2009, 18, (4), p. 045030.
    80. 80)
      • 92. Shao, T., Tarasenko, V., Zhang, C., et al: ‘Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation’, J. Appl. Phys., 2012, 111, (2), p. 023304.
    81. 81)
      • 44. Li, C., Hu, J., Lin, C., et al: ‘Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators’, J. Phys. D, Appl. Phys., 2017, 50, (6), p. 065301.
    82. 82)
      • 54. Li, Y., van Veldhuizen, E., Zhang, G., et al: ‘Positive double-pulse streamers: how pulse-to-pulse delay influences initiation and propagation of subsequent discharges’, Plasma Sources Sci. Technol., 2018, 27, (12), p. 125003.
    83. 83)
      • 98. Kostyrya, I., Tarasenko, V.: ‘Soft X-ray radiation due to a nanosecond diffuse discharge in atmospheric-pressure air’, Tech. Phys., 2010, 55, (2), pp. 270276.
    84. 84)
      • 124. Nakamura, S., Kumada, A., Hidaka, K., et al: ‘Electrical treeing in silicone gel under repetitive voltage impulses’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (6), pp. 19191925.
    85. 85)
      • 71. Li, C., Lin, C., Zhang, B., et al: ‘Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 11521166.
    86. 86)
      • 56. Qiu, Y., Zhang, M., Liu, R., et al: ‘Effect of wavefront on impulse breakdown voltages of slightly nonuniform field gaps in nitrogen, air and SF6’, IEEE Trans. Dielectr. Electr. Insul., 1986, EI-21, (4), pp. 575578.
    87. 87)
      • 30. Zhao, Z., Li, J.: ‘Integrated effect on evolution of streamer dynamics under long-term repetitive sub-microsecond pulses in high-pressure nitrogen’, Plasma Sources Sci. Technol., 2019, 28, (12), p. 115019.
    88. 88)
      • 110. Komuro, A., Ono, R., Oda, T.: ‘Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge’, Plasma Sources Sci. Technol., 2013, 22, (4), p. 045002.
    89. 89)
      • 75. Zhang, C., Huang, B., Luo, Z., et al: ‘Atmospheric-pressure pulsed plasma actuators for flow control: shock wave and vortex characteristics’, Plasma Sources Sci. Technol., 2019, 28, (6), p. 064001.
    90. 90)
      • 122. Golubovskii, Y., Maiorov, V., Behnke, J., et al: ‘Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen’, J. Phys. D, Appl. Phys., 2002, 35, (8), pp. 751761.
    91. 91)
      • 6. Wu, Y., Li, Y., Jia, M., et al: ‘Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics’, Appl. Phys. Lett., 2008, 93, (3), p. 031503.
    92. 92)
      • 16. Pai, D., Lacoste, D., Laux, C.: ‘Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure’, J. Appl. Phys., 2010, 107, (9), p. 093303.
    93. 93)
      • 66. Wan, J., Wang, Q., Dai, D., et al: ‘Two-dimensional simulation of the evolution of radial discharge columns in an atmospheric argon dielectric barrier discharge’, Phys. Plasmas, 2019, 26, (10), p. 103510.
    94. 94)
      • 8. Mangolini, L., Thimsen, E., Kortshagen, U.: ‘High-yield plasma synthesis of luminescent silicon nanocrystals’, Nano Lett., 2005, 5, (4), pp. 655659.
    95. 95)
      • 101. Levko, D., Yatom, S., Krasik, Y.: ‘Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen’, J. Appl. Phys., 2018, 123, (8), p. 064502.
    96. 96)
      • 55. Pancheshnyi, S.: ‘Role of electronegative gas admixtures in streamer start, propagation and branching phenomena’, Plasma Sources Sci. Technol., 2005, 14, (4), pp. 645653.
    97. 97)
      • 15. Xu, D., Lacoste, D., Rusterholtz, D., et al: ‘Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air’, Appl. Phys. Lett., 2011, 99, (12), p. 121502.
    98. 98)
      • 93. Shao, T., Zhang, C., Niu, Z., et al: ‘Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes’, Appl. Phys. Lett., 2011, 98, (2), p. 021503.
    99. 99)
      • 115. Wang, D., Jikuya, M., Yoshida, S., et al: ‘Positive- and negative- pulsed streamer discharges generated by a 100-ns pulsed-power in atmospheric air’, IEEE Trans. Plasma Sci., 2007, 35, (4), pp. 10981103.
    100. 100)
      • 38. Cooke, C.: ‘Charging of insulator surfaces by ionization and transport in gases’, IEEE Trans. Dielectr. Electr. Insul., 1982, EI-17, (2), pp. 172178.
    101. 101)
      • 107. Starikovskiy, A., Aleksandrov, N., Rakitin, A.: ‘Plasma-assisted ignition and deflagration-to-detonation transition’, Philos. Trans. A: Math Phys. Eng. Sci., 2012, 370, (1960), pp. 740773.
    102. 102)
      • 91. Korolev, Y., Mesyats, G.: ‘Physics of pulsed breakdown in gases’ (URO-press, Yekaterinburg, Russia, 1998).
    103. 103)
      • 14. Popov, N.: ‘Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism’, J. Phys. D, Appl. Phys., 2011, 44, (28), p. 285201.
    104. 104)
      • 96. Ivanov, S., Lisenkov, V., Shpak, V.: ‘Streak investigations of the initial phase of a subnanosecond pulsed electrical breakdown of high-pressure gas gaps’, J. Phys. D, Appl. Phys., 2010, 43, (31), p. 315204.
    105. 105)
      • 23. Tholin, F., Bourdon, A.: ‘Influence of temperature on the glow regime of a discharge in air at atmospheric pressure between two point electrodes’, J. Phys. D, Appl. Phys., 2011, 44, (38), p. 385203.
    106. 106)
      • 29. Zhao, Z., Huang, D., Wang, Y., et al: ‘Evolution of streamer dynamics and discharge mode transition in high-pressure nitrogen under long-term repetitive nanosecond pulses with different timescales’, Plasma Sources Sci. Technol., 2019, 28, (8), p. 085015.
    107. 107)
      • 53. Nijdam, S., Takahashi, E., Markosyan, A., et al: ‘Investigation of positive streamers by double-pulse experiments, effects of repetition rate and gas mixture’, Plasma Sources Sci. Technol., 2014, 23, (2), p. 025008.
    108. 108)
      • 4. Madhukar, A., Rajanikanth, B.: ‘Augmenting NOx reduction in diesel exhaust by combined plasma/ozone injection technique: a laboratory investigation’, High Volt., 2018, 3, (1), pp. 6066.
    109. 109)
      • 83. Fridman, A., Kennedy, L.: ‘Plasma physics and engineering’ (CRC Press, Boca Raton, USA, 2004).
    110. 110)
      • 13. Tarasenko, V.: ‘Runaway electrons in diffuse gas discharges’, Plasma Sources Sci. Technol., 2020, 29, (3), p. 034001Available at https://doi.org/10.1088/1361-6595/ab5c57.
    111. 111)
      • 36. Martin, T., Williams, M., Kristiansen, M.: ‘JC martin on pulsed power’ (Springer Science & Business Media, New York, USA, 1996).
    112. 112)
      • 64. Akishev, Y., Aponin, G., Balakirev, A., et al: ‘‘Memory’ and sustention of microdischarges in a steady-state DBD: volume plasma or surface charge?’, Plasma Sources Sci. Technol., 2011, 20, (2), p. 024005.
    113. 113)
      • 41. Nemschokmichal, S., Tschiersch, R., Höft, H., et al: ‘Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling’, Eur. Phys. J. D, 2018, 72, (5), p. 89.
    114. 114)
      • 10. Lu, X., Ostrikov, K.: ‘Guided ionization waves: the physics of repeatability’, Appl. Phys. Rev., 2018, 5, (3), p. 031102.
    115. 115)
      • 49. Acker, F., Penney, G.: ‘Influence of previous positive streamers on streamer propagation and breakdown in a positive point-to-plane gap’, J. Appl. Phys., 1968, 39, (5), pp. 23632369.
    116. 116)
      • 76. Winters, C., Petrishchev, V., Yin, Z., et al: ‘Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid/vapor interface’, J. Phys. D, Appl. Phys., 2015, 48, (42), p. 424002.
    117. 117)
      • 80. Nagaraja, S., Yang, V., Adamovich, I.: ‘Multi-scale modelling of pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry’, J. Phys. D, Appl. Phys., 2013, 46, (15), p. 155205.
    118. 118)
      • 85. Li, J., Zhao, Z., Sun, Y., et al: ‘A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer’, Rev. Sci. Instrum., 2017, 88, (3), p. 033507.
    119. 119)
      • 72. Zhu, Y., Takada, T., Sakai, K., et al: ‘The dynamic measurement of surface charge distribution deposited from partial discharge in air by Pockels effect technique’, J. Phys. D, Appl. Phys., 1996, 29, (11), pp. 28922900.
    120. 120)
      • 119. Huang, B., Takashima, K., Zhu, X., et al: ‘The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges’, J. Phys. D, Appl. Phys., 2014, 47, (42), p. 422003.
    121. 121)
      • 40. Deng, J., Matsuoka, S., Kumada, A., et al: ‘The influence of residual charge on surface discharge propagation’, J. Phys. D, Appl. Phys., 2010, 43, (49), p. 495203.
    122. 122)
      • 114. Iza, F., Walsh, J., Kong, M.: ‘From submicrosecond- to nanosecond-pulsed atmospheric-pressure plasmas’, IEEE Trans. Plasma Sci., 2009, 37, (7), pp. 12891296.
    123. 123)
      • 116. Wang, D., Namihira, T.: ‘Nanosecond pulsed streamer discharges part II: physics, discharge characterization and plasma processing’, Plasma Sources Sci. Technol., 2020, 29, (2), p. 023001Available at https://doi.org/10.1088/1361-6595/ab5bf6.
    124. 124)
      • 62. Nikipelov, A., Popov, I., Pancheshnyi, S., et al: ‘Localized and distributed behavior of nanosecond pulse-periodic discharge in air’. 30th Int. Conf. on Phenomena in Ionized Gases, Belfast, UK, August 2011, p. 346.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0383
Loading

Related content

content/journals/10.1049/hve.2019.0383
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading