access icon openaccess Influence of frequency on the surface discharge characteristics of PEEK under positive repetitive square voltage

In this study, the surface discharge current pulses of polyetheretherketone (PEEK) material under positive repetitive square voltage in a nitrogen atmosphere are measured. The influences of different voltage amplitudes and frequencies on the detail parameters of forward discharge and backward discharge current pulses are statistically analysed. The results show that as the square voltage amplitude increases, the current pulse amplitude, fall time and pulse width of both forward and backward discharge current increase, and the rise time does not change significantly. As the voltage frequency increases, current pulse amplitude, fall time and pulse width of both forward and backward discharge current decrease, and the rise time does not change significantly. Due to the independence of the discharge at different repetitive cycles, the specific discharge process in one cycle is analysed in detail to explain the influence mechanism of the voltage amplitude and frequency on the discharge current. By mean of the Richardson–Schottky and the Cavallini relaxation model, the relationship between discharge voltage ratio and surface charge, and the decay process of surface discharge are analysed. Furthermore, the influences of amplitude and frequency of the positive repetitive square voltage on the PEEK surface current pulses are explained qualitatively.

Inspec keywords: polymers; surface discharges; dielectric relaxation; organic insulating materials; surface charging

Other keywords: discharge process; positive repetitive square voltage; surface discharge current pulses; decay process; discharge voltage ratio; surface discharge characteristics; backward discharge current pulses; current pulse amplitude; pulse width; rise time; nitrogen atmosphere; fall time; surface charge; square voltage amplitude; polyetheretherketone material; statistical analysis; forward discharge current pulses; PEEK surface current pulses; voltage frequency; Cavallini relaxation model; Richardson-Schottky relaxation model; repetitive cycles

Subjects: Organic insulation; Dielectric breakdown and discharges; Dielectric loss and relaxation

References

    1. 1)
      • 23. Nakanishi, K., Yoshioka, A., Arahata, Y., et al: ‘Surface charging on epoxy spacer at dc stress in compressed SF6 gas’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (12), pp. 39193927.
    2. 2)
      • 3. Fu, P., Zhao, Z., Li, X., et al: ‘Partial discharge measurement and analysis in PPIs’, IET Power Electron., 2018, 12, (1), pp. 138146.
    3. 3)
      • 24. Kumada, A., Okabe, S.: ‘Charge distribution measurement on a truncated cone spacer under dc voltage’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (6), pp. 929938.
    4. 4)
      • 19. Wang, J., Cao, J., Cai, L., et al: ‘Characteristics of acoustic response from simulated impulsive lightning current discharge’, High Volt., 2019, 4, (3), pp. 221227.
    5. 5)
      • 18. Li, X., Cui, X., Lu, T., et al: ‘Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge’, Phys. Plasmas, 2016, 23, (12), p. 123516.
    6. 6)
      • 4. Fu, P., Zhao, Z., Cui, X., et al: ‘Partial discharge measurement and analysis in high voltage IGBT modules under DC voltage’, CSEE J. Power Energy Syst., 2018, 4, (4), pp. 513523.
    7. 7)
      • 9. Wang, P., Cavallini, A., Montanari, G.C.: ‘The influence of square voltage rise time on partial discharge spectra’. 2012 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Montreal, Canada, 2012, pp. 129132.
    8. 8)
      • 6. Fu, P., Zhao, Z., Li, X., et al: ‘The role of time-lag in the surface discharge inception under positive repetitive pulse voltage’, Phys. Plasmas, 2018, 25, (9), p. 093518.
    9. 9)
      • 11. Xue, J., Wang, H., Liu, Y., et al: ‘Surface charge distribution patterns of a truncated cone-type spacer for high-voltage direct current gas-insulated metal-enclosed transmission line/gas-insulated metal-enclosed switchgear’, IET Sci. Meas. Technol., 2018, 12, (4), pp. 436442.
    10. 10)
      • 17. Yin, H., Zhang, B., He, J., et al: ‘Measurement of positive direct current corona pulse in coaxial wire-cylinder gap’, Phys. Plasmas, 2014, 21, (3), p. 032116.
    11. 11)
      • 2. Takahashi, Y., Yoshikawa, K., Soutome, M., et al: ‘2.5 kV–1000 A power pack IGBT (high power flat-packaged NPT type RC-IGBT)’, IEEE Trans. Electron Devices, 1999, 46, (1), pp. 245250.
    12. 12)
      • 14. Cavallini, A., Ciani, R., Conti, M., et al: ‘Modelling memory phenomena for partial discharge processes in insulation cavities’. 2003 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Albuquerque, USA., 2003, pp. 723727.
    13. 13)
      • 8. Wu, G., Wu, J., Zou, K., et al: ‘Electric aging mechanism of polyimide under high pulse voltage’, Proc. CSEE, 2009, 29, (13), pp. 124130. (in Chinese).
    14. 14)
      • 12. Niemeyer, L.: ‘A generalized approach to partial discharge modelling’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (4), pp. 729743.
    15. 15)
      • 26. Aleksandrov, N.L., Bazelyan, E.M.: ‘Simulation of long-streamer propagation in air at atmospheric pressure’, J. Phys. D, Appl. Phys., 1996, 29, (3), pp. 740752.
    16. 16)
      • 16. Li, Z., Zhang, B., He, J., et al: ‘Influence of gap spacing on the characteristics of Trichel pulse generated in point-to-plane discharge gaps’, Phys. Plasmas, 2014, 21, (1), p. 012113.
    17. 17)
      • 10. Deng, J., Mu, H., Zhang, G., et al: ‘Residual charge distribution of surface leader discharge under positive impulse voltage’, IEEE Trans. Plasma Sci., 2013, 41, (4), pp. 9991004.
    18. 18)
      • 27. Allen, N.L., Ghaffar, A.: ‘The conditions required for the propagation of a cathode-directed positive streamer in air’, J. Phys. D, Appl. Phys., 1995, 28, (2), pp. 331337.
    19. 19)
      • 22. Bartnikas, R.: ‘Partial discharges, their mechanism, detection and measurement’, IEEE Trans. Dielectr. Electr. Insul., 2002, 9, (5), pp. 763808.
    20. 20)
      • 25. Morshuis, P.H.F., Cavallini, A., Montanari, G.C., et al: ‘Theoretical and experimental derivation of partial discharge height distribution models’. IEEE Conf. on Electrical Insulation & Dielectric Phenomena, Austin, USA., 1999.
    21. 21)
      • 5. Fu, P., Zhao, Z., Li, X., et al: ‘Surface discharge characteristics and initiation mechanism of PEEK in nitrogen under semi-square voltage’, AIP. Adv., 2018, 8, (7), p. 075322.
    22. 22)
      • 7. Cui, X., Wu, X., Zang, W., et al: ‘Transient electromagnetic environment of 500 kV substations in China’. CIGRE Session, Paper C4-302, Paris, 2006.
    23. 23)
      • 20. Li, X., Li, D., Chen, B., et al: ‘Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source’, Phys. Plasmas, 2018, 25, (4), p. 043510.
    24. 24)
      • 13. Gutfleisch, F., Niemeyer, L.: ‘Measurement and simulation of PD in epoxy voids’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (5), pp. 729743.
    25. 25)
      • 15. Cavallini, A., Montanari, G.C.: ‘Effect of supply voltage frequency on testing of insulation system’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 111121.
    26. 26)
      • 21. Hama, H., Hikosaka, T., Okabe, S., et al: ‘Cross-equipment study on charging phenomena of solid insulators in high voltage equipment’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (2), pp. 508519.
    27. 27)
      • 1. Wang, H., Zhao, Z., Fu, P., et al: ‘Insulation performance of polyetheretherketone frame inside press-pack insulated gate bipolar transistors’. 2018 IEEE Int. Power Electronics and Application Conf. and Exposition (PEAC), Shenzhen, China, 2018, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0292
Loading

Related content

content/journals/10.1049/hve.2019.0292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading