access icon openaccess Gas–solid interface charge characterisation techniques for HVDC GIS/GIL insulators

Surface charge accumulation on the spacers is one of the key issues restraining the development of HVDC GIS/GIL. The precise measurement of surface charge properties provides the basis for further study of the surface charge transport mechanism as well as the charge-induced flashover mechanism under DC voltage. In this study, the authors discuss their perspective on the current status, development needs and potential developing orientation of surface charge characterisation techniques. Different surface potential measurement methods and charge inversion algorithms are reviewed regarding the previous studies and future research needs. Drawbacks and outlooks of surface charge measurement techniques are also discussed with the background of laboratory experiment results and on-site measurements. It is hopefully that this study can serve as a useful guide reference for researchers within the same research field. More importantly, it is authors’ hope that this study can inspire some novel ideas for readers into developing of more accurate and scientific interface charge characterisation techniques.

Inspec keywords: charge measurement; surface charging; surface potential; gas insulated switchgear; gas insulated transformers; flashover

Other keywords: charge inversion algorithms; HVDC GIS-GIL insulators; surface charge properties; gas-solid interface charge characterisation techniques; DC voltage; charge-induced flashover mechanism; surface charge accumulation; on-site measurements; surface charge transport mechanism; precise measurement; surface charge measurement techniques; surface potential measurement methods; surface charge characterisation techniques

Subjects: Charge measurement; Dielectric breakdown and discharges; Transformers and reactors; Switchgear

References

    1. 1)
      • 60. Naik, M.G.C., Amarnath, J., Kamakshiah, S.S.: ‘A new optimised design of single phase gas insulated cone type insulator’, Int. J. Eng. Sci. Technol., 2012, 4, (3), pp. 929936.
    2. 2)
      • 91. Schueller, M., Gremaud, R., Franck, C.M.: ‘Accuracy of surface potential measurements of HVDC spacers’. Int. Conf. High Volt. Eng. Appl., Poznan, Poland, 2014.
    3. 3)
      • 34. Davies, D.K.: ‘Examination of the electrical properties of insulators by surface charge measurement’, J. Sci. Instrum., 1967, 44, (7), pp. 521524.
    4. 4)
      • 105. Wang, C.: ‘Physical model for surface charge supported flashover’. Gaseous Dielectrics VII, Knoxville, TN, USA, 1994, pp. 519525.
    5. 5)
      • 10. Schueller, M., Straumann, U., Franck, C.M.: ‘Role of ion sources for spacer charging in SF6 gas insulated HVDC systems’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, pp. 352359.
    6. 6)
      • 16. Vu-Cong, T., Zavattoni, L., Vinson, P., et al: ‘Surface charge measurements on epoxy spacer in HVDC GIS/GIL in SF6’. Annual Report Conf. Electrical Insulation and Dielectric Phenomena, Toronto, ON, Canada, 2016, pp. 9396.
    7. 7)
      • 89. Schueller, M.: ‘Role and impact of different charge sources on surface charge accumulation in gas insulated HVDC systems’. PhD, High Voltage Laboratory, ETHZ, Zürich, 2014, doi: http://dx.doi.org/10.3929/ethz-a-010388684.
    8. 8)
      • 36. Zhang, Y.L., Wang, F., Li, Z., et al: ‘Development of surface charge detection device for DC composite insulator’, High Volt. Eng., 2014, 40, (5), pp. 15141519(in Chinese).
    9. 9)
      • 96. Xu, Z., Zhang, L., Chen, G.: ‘Decay of electric charge on corona charged polyethylene’, J. Phys. D: Appl. Phys., 2007, 40, (22), pp. 70857089.
    10. 10)
      • 22. Li, C.Y., Lin, C.J., Chen, G., et al: ‘Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors’, Appl. Phys. Lett., 2019, 114, (20), p. 202904.
    11. 11)
      • 69. Gao, C.J., Qi, B., Xing, Z.L., et al: ‘Development of a surface charge measurement system for GIS insulator in SF6’. Proc. 2015 IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015.
    12. 12)
      • 70. Takuma, T., Yashima, M., Kawamoto, T.: ‘Principle of surface charge measurement for thick insulating specimens’, IEEE Trans. Dielectr. Electr. Insul., 1988, 5, (4), pp. 497504.
    13. 13)
      • 79. Xue, J.Y., Chen, J.H., Dong, J.H., et al: ‘The regulation mechanism of Sic/epoxy coatings on surface charge behavior and flashover performance of epoxy/alumina spacers’, J. Phys. D: Appl. Phys., 2019, 52, article number: 405502.
    14. 14)
      • 18. Liang, H.C., Du, B.X., Li, J., et al: ‘Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress’, Gener. Transm. Distrib., 2018, 12, pp. 8389.
    15. 15)
      • 24. Kawasaki, T., Arai, Y., Takada, T.: ‘Two-dimensional measurement of electrical surface charge distribution insulating by electro-optic Pockels effect’, Jpn. J. Appl. Phys., 1991, 30, (30), pp. 12621265.
    16. 16)
      • 100. Simka, P., Teppati, V., Vukas, M.: ‘Charge injection and multiplication in SF6 and vacuum under DC electric fields’. ICPADM 2015, Sydney, Australia, 2015.
    17. 17)
      • 73. Pedersen, A.: ‘On the electrostatics of probe measurements of surface charge densities’. Proc. Fifth Int. Symp. Gaseous Dielectr. V, Knoxville, TN, USA, 1987, pp. 235241.
    18. 18)
      • 58. Kumada, A., Okabe, S., Hidaka, K.: ‘Resolution and signal processing technique of surface charge density measurement with electrostatic probe’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (1), pp. 122129.
    19. 19)
      • 78. Zhang, B., Qi, Z., Gao, W., et al: ‘Accumulation characteristics of surface charge on a cone-type model insulator under DC voltage’. Proc. 2018 IEEE Int. Conf. High Volt. Eng. Appl. (ICHVE), Athens, Greece, 10–13 September 2018.
    20. 20)
      • 75. Reruo, T.O., Crichton, G.C., McAllister, I.W.: ‘The response of electrostatic probes via the λ-function’. Conf. Record 1994 IEEE Int. Symp. Electr. Insul., Pittsburgh, PA, USA, 1994.
    21. 21)
      • 4. Zhang, C., Lin, H.F., Zhang, S., et al: ‘Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages’, J. Phys. D: Appl. Phys., 2017, 50, p. 405203.
    22. 22)
      • 41. Molini, P., Agnel, S., Castellon, J.: ‘Investigations on charge accumulation and relaxation in polycrystalline Al2O3: correlations of surface potential measurements with other techniques’. Proc. 2010 10th IEEE Int. Conf. Solid Dielectr., Potsdam, Germany, 4–9 July 2010.
    23. 23)
      • 5. Du, B.X., Du, Q., Li, J., et al: ‘Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin’, Gener. Transm. Distrib., 2018, 12, pp. 446471.
    24. 24)
      • 19. Li, C.Y., Hu, J., Lin, C.J., et al: ‘The neglected culprit of DC surface flashover-electron migration under temperature gradients’, Sci. Rep., 2017, 7, pp. 111.
    25. 25)
      • 94. Fukuma, M., Maeno, T., Fukunaga, K.: ‘Cross-section space charge measurement system’. IEEE Int. Conf. Solid Dielectr., Toulouse, France, 2004, pp. 182185.
    26. 26)
      • 37. Qi, B., Gao, C.J., Xing, Z.L., et al: ‘Distribution characteristic for surface charge on GIS insulator under DC/AC voltage’, Proc. CSEE, 2016, 36, (21), pp. 59906001(in Chinese).
    27. 27)
      • 8. Mazzanti, G., Stomeo, G., Mancini, S.: ‘State of the art in insulation of gas insulated substations: main issues, achievements, and trends’, IEEE Electr. Insul. Mag., 2016, 32, (5), pp. 1831.
    28. 28)
      • 26. Murooka, Y., Koyama, S.: ‘Nanosecond surface discharge study by using dust figure techniques’, J. Appl. Phys., 1973, 44, (4), pp. 15761580.
    29. 29)
      • 85. Kumada, A., Okabe, S.: ‘Measurement of surface charge on opposite sides of a planar insulator using an electrostatic probe’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (6), pp. 919928.
    30. 30)
      • 40. Zhuang, Y., Chen, G., Rotaru, M.: ‘Charge injection in gold ground electrode corona charged polyethylene film: surface potential decay and corona charging current measurement’. Proc. 2011 – 14th Int. Symp. Electrets, Montpellier, France, 28–31 August 2011.
    31. 31)
      • 54. Gremaud, R., Doiron, C., Baur, M., et al: ‘Solid-gas insulation in HVDC gas-insulated system: measurement, modeling and experimental validation for reliable operation’, CIGRÉ Sci. Eng., 2017, 7, pp. 133142, ‘Best of’ Paris Session 2016, CIGRE © 21, rue d'Artois, 75008 Paris; ISSN: 1286-1146.
    32. 32)
      • 52. Tschentscher, M., Franck, C.M.: ‘Microscopic charge provision at interfaces of gas-insulated (HVDC/HVAC) systems’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 11861194.
    33. 33)
      • 65. Wintle, H.J.: ‘Theory of the potential probe used in static electrification measurements on insulators’, Phys. E, 1970, 3, pp. 334336.
    34. 34)
      • 17. Li, C.Y., Lin, C.J., Liu, W.D., et al: ‘Novel HVDC spacers by adaptive control of surface charges – part II: experiment’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 12481258.
    35. 35)
      • 76. Okabe, S., Okada, T., Yuasa, S., et al: ‘Effect of DC pre-stress on dielectric characteristics of an insulator in SF6 gas’. Proc. 12th Int. Symp. High Volt. Eng., Bangalore, 2001, vol. 2, pp. 351354.
    36. 36)
      • 81. Johansson, T., Crichton, G.C., McAllister, I.W.: ‘Influence of probe geometry on the response of an electrostatic probe’. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), Austin, 1999, pp. 137141.
    37. 37)
      • 53. Gremaud, R., Doiron, C., Baur, M., et al: ‘Solid-gas insulation in HVDC gas-insulated system: measurement, modeling and experimental validation for reliable operation’. CIGRÉ Report D1-101, 46th CIGRÉ Session, Palais des Congrès de Paris, Paris, France, 21–26 August 2016.
    38. 38)
      • 39. Wang, F., Liu, H.B.: ‘Study on on-line monitoring of surface charge of insulator based on generalized probe’, Transducer Microsyst. Technol., 2011, 30, (8), pp. 5961(in Chinese).
    39. 39)
      • 15. Li, C.Y., Lin, C.J., Liu, W.D., et al: ‘Novel HVDC spacers by adaptive control of surface charges – part I: charge transport and control strategy’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 12381247.
    40. 40)
      • 47. Rossi, F., Opat, G.I., Cimmino, A.: ‘Modified Kelvin technique for measuring strain-induced contact potentials’, Rev. Sci. Instrum., 1992, 63, (7), pp. 37363743.
    41. 41)
      • 63. Specht, H.: ‘Oberflächcnladungen bei rotatians symmetrischen isolierstoffkörpern’, ETZ-A, 1976, 97, p. 474.
    42. 42)
      • 50. Kindersberger, J., Lederle, C.: ‘Surface charge decay on insulators in air and sulfurhexafluorid – part II: measurements’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 949957.
    43. 43)
      • 51. Tschentscher, M., Franck, C.M.: ‘Conduction processes in gas-insulated HVDC equipment: from saturated ion currents to micro-discharges’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 11671176.
    44. 44)
      • 72. Ahmed, N.H., Srinivas, N.N.: ‘Review on space charge measurements in dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 1997, 4, pp. 644656.
    45. 45)
      • 59. Ma, G.M., Zhou, H.Y., Liu, S.P., et al: ‘Measurement and simulation of charge accumulation on a disc spacer with electro-thermal stress in SF6 gas’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 12211229.
    46. 46)
      • 80. Park, S.C., Park, M.K., Kang, M.G.: ‘Super-resolution image reconstruction: A technical overview’, IEEE Signal Process. Mag., 2003, 20, pp. 2136.
    47. 47)
      • 12. Li, J., Du, B.X., Liang, H.C., et al: ‘Surface functional graded spacer for compact HVDC gaseous insulated system’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (2), pp. 664667.
    48. 48)
      • 93. Dong, J.H., Wu, K., Shao, Z.H., et al: ‘Space charge accumulation in epoxy resin and its nanocomposites under temperature gradient’. IEEE Conf. Electr. Insul. Dielectr. Phenom., Ann Arbor, MI, USA, 2015.
    49. 49)
      • 87. Li, C.Y., Xu, Y., Lin, C.J., et al: ‘Surface charging phenomenon on HVDC spacers in compressed SF6 insulation and charge tailoring strategies’, CSEE-JPES, accepted.
    50. 50)
      • 74. Rerup, T.O., Crichton, G.C., McAllister, I.W.: ‘Using the λ function to evaluate probe measurements of charged dielectric surfaces’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (6), pp. 770777.
    51. 51)
      • 21. Ootera, H., Nakanishi, K.: ‘Analytical method for evaluating surface charge distribution on a dielectric from capacitive probe measurement – application to a cone-type spacer in ±500 kV DC-GIS’, IEEE Trans. Power Deliv., 1988, 3, pp. 165172.
    52. 52)
      • 32. Zhang, Z.S., Deng, B.J., Li, C.Y., et al: ‘Multiphysics coupled modelling in HVDC GILs: critical re-examination of ion mobility selection’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 835842.
    53. 53)
      • 43. Xue, J.Y., Wang, H., Liu, Y., et al: ‘Surface charge distribution patterns of a truncated cone-type spacer for high-voltage direct current gas-insulated metal-enclosed transmission line/gas-insulated metal-enclosed switchgear’, IET Sci. Meas. Technol., 2018, 12, (4), pp. 436442.
    54. 54)
      • 71. Yashima, M., Fujinami, H., Takuma, T.: ‘Measurement of accumulated charge on dielectric surfaces with an electrostatic probe’. Proc. 5th Int. Symp. Gaseous Dielectr. V, Knoxville, TN, USA, 1987, pp. 242248.
    55. 55)
      • 2. Lutz, B., Kindersberger, J.: ‘Influence of the relative humidity on the DC potential distribution of polymeric cylindrical model insulators’. Proc. IEEE Int. Conf. Condition Monitoring and Diagnosis, Tokyo, Japan, 2010, paper C4-4.
    56. 56)
      • 7. Cooke, C.M.: ‘Charging of insulator surfaces by ionization and transport in gases’, IEEE Trans. Dielectr. Electr. Insul., 1982, EI-17, (2), pp. 172178.
    57. 57)
      • 99. Gremaud, R., Zhao, Z., Baur, M.: ‘Measurement of DC conduction in alumina-filled epoxy’. 1st Int. Conf. Dielectr. (ICD), Montpellier, France, 2016.
    58. 58)
      • 82. Kumada, A., Okabe, S., Hidaka, K.: ‘Charge accumulation on truncated cone spacer under dc electric field’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, pp. 929938.
    59. 59)
      • 101. Zavattoni, L.: ‘Conduction phenomena through gas and insulating solids in HVDC Gas Insulated Substations, and consequences on electric field distribution’. PhD, Université de Grenoble, Grenoble, 2015.
    60. 60)
      • 106. Kumara, S., Alam, S., Hoque, I.R., et al: ‘DC flashover characteristics of a polymeric insulator in presence of surface charges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, pp. 10841090.
    61. 61)
      • 97. Lei, Z., Li, C., Men, R., et al: ‘Mechanism of bulk charging behavior of ethylene propylene rubber subjected to surface charge accumulation’, J. Appl. Phys., 2018, 124, (24), article number: 244103.
    62. 62)
      • 77. Kumada, A., Okabe, S., Hidaka, K.: ‘Influences of probe geometry and experimental errors on spatial resolution of surface charge measurement with electrostatic probe’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (6), pp. 11721181.
    63. 63)
      • 45. Pan, C., Song, W.B., Tang, J., et al: ‘Influence of surface charge decay on cavity PD frequency at DC voltage’, IET Sci. Meas. Technol., 2019, 13, (2), pp. 193200.
    64. 64)
      • 64. Pedersen, A.: ‘On the electrostatic field near the charged surface of an insulator with special reference to surface charge probe measurements’. Gaseous Dielectrics IV, Knoxville, TN, USA, 1984, pp. 414420.
    65. 65)
      • 49. Fatihou, A., Dascalescu, L., Zouzou, N., et al: ‘Measurement of surface potential of non-uniformly charged insulating materials using a non-contact electrostatic voltmeter’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 23772384.
    66. 66)
      • 46. Li, C.Y., Hu, J., Lin, C.J., et al: ‘The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites’, J. Phys. D: Appl. Phys., 2016, 49, p. 445304.
    67. 67)
      • 83. Winter, A., Kindersberger, J.: ‘Measurement of double layer surface charge density distributions on insulating plates with capacitive probes’. Proc. Intern. Conf. Adv. Process, Test. Appl. Dielectr. Mater., Wroclaw, Poland, 2001, pp. 123128.
    68. 68)
      • 84. Winter, A., Kindersberger, J.: ‘Surface charge accumulation on insulating plates in SF6 and the effect on DC and AC break-down voltage of electrode arrangements’. IEEE Conf. Electr. Insul. Dielectr. Phenom., Cancun, Mexico, 2002, pp. 454461.
    69. 69)
      • 33. Yan, W., Li, C.Y., Lei, Z.P., et al: ‘Surface charging on HVDC spacers considering time-varying effect of temperature and electric fields’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (4), pp. 13161324.
    70. 70)
      • 42. Sam, Y.L., Lewin, P.L., Davies, A.E., et al: ‘Dynamic measurement of surface charge’. Proc. 2000 Eighth Int. Conf. Dielectr. Mater., Meas. Appl. (IEE Conf. Publ. No. 473), Edinburgh, UK, 17–21 September 2000.
    71. 71)
      • 48. Schueller, M., Gremaud, R., Baur, M., et al: ‘Kelvin probe for surface potential measurements on epoxy insulators for HVDC applications’. Proc. 2018 IEEE Int. Conf. High Volt. Eng. Appl. (ICHVE), Athens, Greece, 10–13 September 2018.
    72. 72)
      • 30. Li, C.Y., Zhu, Y.J., He, J.L., et al: ‘Donut-shaped charge cluster triggers unpredictable surface flashover in HVDC spacers’, preparing.
    73. 73)
      • 31. Zhang, J.W., Cao, D.K., Diaham, S., et al: ‘Research on potential induced degradation (PID) of polymeric backsheet in PV modules after salt-mist exposure’, Sol. Energy, 2019, 188, pp. 475482.
    74. 74)
      • 9. Wu, Z., Zhang, Q., Ma, J., et al: ‘Effectiveness of on-site dielectric test of GIS equipment’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 14541460.
    75. 75)
      • 44. Du, B.X., Chang, R., Zhu, W.B., et al: ‘Temperature-dependent surface charge and discharge behaviour of converter transformer oil–paper insulation under DC voltage’, IET Sci. Meas. Technol., 2019, 13, (1), pp. 2934.
    76. 76)
      • 86. Lin, C.J., Li, C.Y., He, J.L., et al: ‘Surface charge inversion algorithm based on bilateral surface potential measurements of cone-type spacer’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 19051912.
    77. 77)
      • 38. Wang, F., Zhang, Q., Qiu, Y.C., et al: ‘Insulator surface charge accumulation under DC voltage’. Proc. Conf. Record 2002 IEEE Int. Symp. Electr. Insul. (Cat No. 02CH37316), Boston, MA, USA, 7–10 April 2002.
    78. 78)
      • 6. Li, C.Y., Hu, J., Lin, C.J., et al: ‘Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators’, J. Phys. D: Appl. Phys., 2017, 50, (6), p. 065301.
    79. 79)
      • 20. Zhou, H.Y., Ma, G.M., Li, C.R., et al: ‘Impact of temperature on surface charges accumulation on insulators in SF6-filled DC-GIL’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 601610.
    80. 80)
      • 62. Winte, A., Kindersberger, J.: ‘Surface charge density distributions on insulating plates under pressurized gases’. 12th Int. Symp. High Volt. Eng., Bangalore, 2001, vol. 1, pp. 2428.
    81. 81)
      • 90. Hering, M., Gremaud, R., Speck, J., et al: ‘Flashover behaviour of insulators with inhomogeneous temperature distribution in gas insulated systems under DC voltage stress’. Int. Conf. High Volt. Eng. Appl., Poznan, Poland, 2014.
    82. 82)
      • 1. Du, B.X., Li, J.: ‘Effects of ambient temperature on surface charge and flashover of heat-shrinkable polymer under polarity reversal voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 11901197.
    83. 83)
      • 14. Tenbohlen, S., Schroder, G.: ‘The influence of surface charge on lightning impulse breakdown of spacers in SF6’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, pp. 241246.
    84. 84)
      • 56. Wang, Q., Zhang, G., Wang, X.: ‘Characteristics and mechanisms of surface charge accumulation on a cone-type insulator under dc voltage’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 150155.
    85. 85)
      • 92. Kikuchi, S., Mizutani, S., Miyake, H., et al: ‘Effect of heat treatment on space charge accumulation in epoxy resin under high DC stress’. IEEE Conf. Electr. Insul. Dielectr. Phenom., Des Moines, IA, USA, 2014, pp. 808811.
    86. 86)
      • 23. Zhang, B., Gao, W., Qi, Z., et al: ‘Inversion algorithm to calculate charge density on solid dielectric surface based on surface potential measurement’, IEEE Trans. Instrum. Meas., 2017, 66, (12), pp. 33163326.
    87. 87)
      • 66. Khalil, M.S., Hansen, B.S.: ‘Investigation of space charge in low-density polyethylene using a field probe technique’, IEEE Trans. Electr. Insul., 1988, 23, pp. 441445.
    88. 88)
      • 13. Lutz, B., Kindersberger, J.: ‘DC potential distribution of cylindrical polymeric model insulators at different environmental conditions’. ETGFachbericht 125, Isoliersysteme bei Gleich- und Mischfeldbean-spruchung, Berlin, Germany, paper 2.2, 2010.
    89. 89)
      • 98. Qi, B., Gao, C.J., Li, C.R., et al: ‘Effect of surface charge accumulation on flashover voltage of GIS insulator in SF6 under DC and AC voltages’. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom., Ann Arbor, MI, USA, 2015, pp. 1821.
    90. 90)
      • 29. Li, C.Y., Lin, C.J., Zhang, B., et al: ‘Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 11521166.
    91. 91)
      • 95. Fukuma, M., Masuda, N., Fukunaga, K.: ‘Development of sensor scanning type space charge measurement system’. Annual Report Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), West Lafayette, IN, USA, 2010, pp. 14.
    92. 92)
      • 3. Li, C.Y., He, J.L., Hu, J.: ‘Surface morphology and electrical characteristics of direct fluorinated epoxy-resin/alumina composite’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, pp. 30713077.
    93. 93)
      • 61. Lang, S.B., Das-gupta, D.K.: ‘Laser intensity modulation method: A technique for determination of spatial distributions of polarization and space charge in polymer electrets’. Proc. 5th Int. Symp. Eletrets, Heidelberg, 1985, pp. 444449.
    94. 94)
      • 103. Kaufmann, B., Kudoke, M., Großmann, S.: ‘Experimental verification of convective heat transfer computations for gas insulated switchgear’. 2013 4th Int. Youth Conf. Energy (IYCE), Siofok, Hungary, 2013, pp. 16.
    95. 95)
      • 68. Zheng, N., Huang, X., Yu, K., et al: ‘Measurement of surface charge distribution on insulating material under pulsed voltage’. Proc. of the 24th ISDEIV 2010, Braunschweig, Germany, 30 August–3 September 2010.
    96. 96)
      • 35. Wang, F., Qiu, Y.C., Pfeiffer, W., et al: ‘Insulator surface charge accumulation under impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 847854.
    97. 97)
      • 67. Lin, C.J., Li, C.Y., Zhang, G.X., et al: ‘Review and prospect of surface charge inversion algorithm of cone-type spacer based on surface potential measurement’, Proc. CSEE, 2016, 36, (24), pp. 66546663(in Chinese).
    98. 98)
      • 11. Xue, J., Wang, H., Chen, J., et al: ‘Effects of surface roughness on surface charge accumulation characteristics and surface flashover performance of alumina-filled epoxy resin spacers’, J. Appl. Phys., 2018, 124, (8), p. 083302.
    99. 99)
      • 27. Murooka, Y., Takada, T., Hiddaka, K.: ‘Nanosecond surface discharge and charge density evaluation part I: review and experiments’, IEEE Electr. Insul. Mag., 2001, 17, (2), pp. 616.
    100. 100)
      • 28. Okabe, S., Kumada, A.: ‘Measurement methods of accumulated electric charges on spacer in gas insulated switchgear’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 15471556.
    101. 101)
      • 102. Zavattoni, L., Hanna, R., Lesaint, O.: ‘Dark current measurements in humid SF6: influence of electrode roughness, relative humidity and pressure’, J. Phys. D: Appl. Phys., 2015, 48, p. 375501.
    102. 102)
      • 55. Riechert, U.: ‘Verification of HVDC GIS spacer models’. CIGRÉ Contribution D1, PS1-Q1, 47th CIGRÉ Session, Palais des Congrès de Paris, Paris, France, 26–31 August 2018.
    103. 103)
      • 88. Gremaud, R., Schueller, M., Doiron, C.B., et al: ‘Experimental validation of electric field modeling in DC gas-insulated system’. International Study Committee Meeting and Colloquium 2015 CIGRÉ Study Committee D1 (Materials and Emerging Test Techniques, Trends in Technology, Materials, Testing and Diagnostics Applied to Electric Power Systems, Proceedings, paper 21), Rio de Janeiro, Brazil, 13th–18th September 2015.
    104. 104)
      • 25. Lichtenberg, G.C.: ‘Nova methodo naturam AC motum fluidi electrici investigandi’, Comment. Soc., Göttingen, 1778, 8, pp. 168179.
    105. 105)
      • 57. Faircloth, D.C., Allen, N.L.: ‘High resolution measurements of surface charge densities on insulator surfaces’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (2), pp. 285290.
    106. 106)
      • 104. Riechert, U., Straumann, U., Gremaud, R.: ‘Compact gas-insulated systems for high voltage direct current transmission: basic design’. Presented at the IEEE Transmission and Distribution Conference and Exposition, Dallas, USA, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0289
Loading

Related content

content/journals/10.1049/hve.2019.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading