access icon openaccess Charge accumulation characteristic on polymer insulator surface under AC voltage in air and C4F7N/CO2 mixtures

Charge accumulation has always been a problem for the safe operation of gas insulated switchgear (GIS)/gas insulated transmission line (GIL) both under AC and DC. It is of great significance to investigate the behaviour of surface charge under high voltage. In this study, the charge distribution characteristics and accumulation mechanism on insulator surface in air and heptafluorobutyronitrile/carbon dioxide (C4F7N/CO2) mixtures under AC voltage are studied via the means of surface potential measurement and inversion algorithm, combined with the improved method of controlling the truncated phase of AC voltage. The results show that under the needle–plate electrode structure, charge distribution on the insulator surface presents a three-tier concentric circle structure both in air and C4F7N/CO2 gas mixtures, and the charge composition of the innermost circle is closely related to the truncated phase of AC voltage. Under the same amplitude of voltage, the range of charge distribution on insulator surface in C4F7N/CO2 mixtures is smaller than that in air, with the negative charges domination. It is suggested that the characteristic of charge distribution in C4F7N/CO2 mixtures is related to the larger electron attachment cross-section of C4F7N gas in a wide range of electron energy distribution.

Inspec keywords: surface potential; electron attachment; electrodes; polymer insulators; surface charging; organic insulating materials; gas mixtures; space charge

Other keywords: high voltage surface charge; three-tier concentric circle structure; heptafluorobutyronitrile-carbon dioxide mixtures; surface potential measurement; charge distribution; voltage amplitude; needle-plate electrode structure; C4F7N-CO2 gas mixtures; AC voltage; GIS-GIL operation; truncated phase; charge accumulation characteristic; electron energy distribution; inversion algorithm; electron attachment cross-section; polymer insulator surface

Subjects: Dielectric breakdown and space-charge effects; Solid surface structure; Electron-ion recombination and electron attachment (atoms and molecules); Static electrification

References

    1. 1)
      • 23. Sun, J., Sun, L., Chen, W., et al: ‘Metal particle movement and distribution characteristics under AC voltage and ball-plane electrodes,High Volt., 2019, 4, (2), pp. 138143.
    2. 2)
      • 20. Faircloth, D., Allen, N.: ‘High-resolution measurements of surface charge densities on insulator surfaces’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (2), pp. 285290.
    3. 3)
      • 2. Sato, S., Zaengl, W.S., Knecht, A.: ‘A numerical analysis of accumulated surface charge on DC epoxy resin spacers’, IEEE Trans. Electr. Insul., 1987, 22, (3), pp. 333340.
    4. 4)
      • 7. Li, C., Lin, C., Hu, J., et al: ‘Novel HVDC spacers by adaptively controlling surface charges – part I: charge transport and control strategy’, IEEE Trans. Electr. Insul., 2018, 25, (4), pp. 12381247.
    5. 5)
      • 9. Wang, C.: ‘Non-intrusive measurement of GIS barrier surface charging’. Proc. IEEE Conf. Electrical Insulation and Dielectric Phenomena, VA, USA, 1995, pp. 420423.
    6. 6)
      • 26. Braun, M, Marienfeld, S., Ruf, M.W., et al: ‘High-resolution electron attachment to the molecules CCl4 and SF6 overextended energy ranges with the (EX) LPA method’, J. Phys. B, At. Mol. Opt. Phys., 2009, 42, (12), p. 125202.
    7. 7)
      • 1. Li, C., Lin, C., Yang, Y., et al: ‘Novel HVDC spacers by adaptively controlling surface charges – part II: experiment’, IEEE Trans. Electr. Insul., 2018, 25, (4), pp. 12481258.
    8. 8)
      • 11. Li, C., Hu, J., Lin, C., et al: ‘Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators’, J. Phys. D, Appl. Phys., 2017, 50, (6), p. 065301.
    9. 9)
      • 27. Chachereau, A., Hösl, A., Franck, C.M.: ‘Electrical insulation properties of the perfluoronitrile C4F7N’, J. Phys. D, Appl. Phys., 2018, 51, p. 495201.
    10. 10)
      • 21. Li, D., Zhang, G., Hou, Y., et al: ‘Charge distribution on polymer insulator surface under AC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (5), pp. 17091715.
    11. 11)
      • 29. Kieffel, Y., Irwin, T., Ponchon, P., et al: ‘Green gas to replace SF6 in electrical grids’, IEEE Power Energy, 2016, 14, (2), pp. 3239.
    12. 12)
      • 6. Zhang, B., Zhang, G., Wang, Q., et al: ‘Suppression of surface charge accumulation on Al2O3-filled epoxy resin insulator under dc voltage by direct fluorination’, AIP Adv., 2015, 5, (12), p. 127207.
    13. 13)
      • 18. Li, Y., Zhang, X., Zhang, J, et al: ‘Experimental study on the partial discharge and AC breakdown properties of C4F7N/CO2 mixture’, High Volt., 2019, 4, (1), pp. 1217.
    14. 14)
      • 24. Zhang, B., Gao, W., Qi, Z., et al: ‘Inversion algorithm to calculate charge density on solid dielectric surface based on surface potential measurement’, IEEE Trans. Instrum. Meas., 2017, 66, (12), pp. 33163326.
    15. 15)
      • 12. Jing, T., Morshuis, P.H.F.: ‘Space charge induced field variation on epoxy spacers under AC stresses in SF6’. Proc. Sixth Int. Conf. Dielectrical Materials, Measurements and Applications, Manchester, UK, 1992, pp. 710.
    16. 16)
      • 28. Zhou, W., Zheng, Y., Gao, K., et al: ‘Progress in researching electrical characteristics of environment-friendly insulating gases’, High Volt. Eng., 2018, 44, (10), pp. 31143124 (in Chinese).
    17. 17)
      • 10. Boggs, A.S., Wang, Y.: ‘Trapped charge-induced field distortion on GIS’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 12701275.
    18. 18)
      • 25. Qiu, Y.: ‘An approach to designing high dielectric strength gas mixtures’, J. Xi'an Jiaotong Univ., 1983, 17, (4), pp. 2635 (in Chinese).
    19. 19)
      • 16. Tu, Y., Ai, X., Cheng, Y., et al: ‘DC breakdown characteristics of C3F7CN/N2 gas mixtures’, Trans. China Electrotech. Soc., 2018, 33, (22), pp. 51895195 (in Chinese).
    20. 20)
      • 13. Elkhodary, S.M., Hackam, R.: ‘Effects of ac voltage on charge density in a spacer’. Proc. IEEE Conf. Electrical Insulation and Dielectric Phenomena, VA, USA, 1995, pp. 500503.
    21. 21)
      • 15. Zhang, X., Tian, S., Xiao, S., et al: ‘A review study of SF6 substitute gases’, Trans. China Electrotech. Soc., 2018, 33, (12), pp. 28832893 (in Chinese).
    22. 22)
      • 8. Qi, B., Gao, C., Lv, Y., et al: ‘The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism’, J. Phys. D, Appl. Phys., 2018, 51, (24), p. 245303.
    23. 23)
      • 17. Kieffel, Y, Biquez, F, Ponchon, P., et al: ‘SF6 alternative development for high-voltage switch gears’. IEEE Power Energy Society General Meeting, Denver, USA, 2015, pp. 379393.
    24. 24)
      • 5. Li, C., Lin, C., Chen, G., et al: ‘Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors’, J. Appl. Phys. Lett., 2019, 114, p. 202904.
    25. 25)
      • 19. Mu, H., Zhang, G.: ‘Investigation of surface discharges on different polymeric materials under HVAC in atmospheric air’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 485494.
    26. 26)
      • 3. Nakanishi, K., Yoshioka, A., Arahata, Y., et al: ‘Surface charging on epoxy spacer at DC stress in compressed SF6 gas’, IEEE Trans. Power Deliv., 1983, 102, (12), pp. 39193927.
    27. 27)
      • 14. Sudarshan, T.S., Dougal, R.A.: ‘Mechanisms of surface flashover along solid dielectrics in compressed gases: a review’, IEEE Trans. Dielectr. Electr. Insul., 1986, 21, (5), pp. 727746.
    28. 28)
      • 4. Mangelsdort, C.W., Cook, C.M.: ‘Bulk charging of epoxy insulation under DC stress’. IEEE Int. Symp. Electrical Insulation, Boston, USA, 1980, pp. 146149.
    29. 29)
      • 22. Xu, Y.: ‘Study on PD detection and tracing method of the potential defects on GIS insulators’. PhD thesis, Tsinghua University, 2018 (in Chinese).
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0267
Loading

Related content

content/journals/10.1049/hve.2019.0267
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading