access icon openaccess Investigation of sensitivity of the ultra-high frequency partial-discharge detection technology for micro-crack in epoxy insulator in GIS

The ultra-high frequency (UHF) method has been widely used in a gas-insulated system (GIS) for partial-discharge detection, and many achievements have been realised. In addition, many studies based on artificial defects have been made to confirm its validity. Therefore, the UHF method is generally believed to be sufficiently effective for GIS monitoring. However, in practical application, the authors find that for some micro-crack discharge in GIS insulator, the UHF method has low sensitivity. To fully study the characteristics of the micro-crack discharge in the GIS insulator, an experiment is conducted in this study using an actual post insulator with a micro-crack defect. The current signal based on IEC 60270 standard and the radio-frequency electromagnetic signal is simultaneously measured for thorough analysis. The results show that some submillimetre crack defects may occur in the GIS insulator. Its discharge is mainly presented as glow discharge, and the discharge signal frequency usually cannot reach the UHF band; thus, it cannot be effectively detected by the UHF method. This study provides complementary information to the applicability of the UHF method and inspires further study of the GIS insulator and its monitoring technology.

Inspec keywords: IEC standards; partial discharge measurement; gas insulated switchgear; glow discharges; microcracks; epoxy insulators

Other keywords: GIS insulator; submillimetre crack defects; ultrahigh frequency partial-discharge detection technology; discharge signal frequency; gas-insulated system; GIS monitoring; glow discharge; microcrack defect; radiofrequency electromagnetic signal; IEC 60270 standard; epoxy insulator; UHF method; microcrack discharge; actual post insulator

Subjects: Switchgear; Charge measurement; Power line supports, insulators and connectors; Dielectric breakdown and discharges

References

    1. 1)
      • 27. Hoshino, T., Koyama, H., Maruyama, S., et al: ‘Comparison of sensitivity between UHF method and IEC 60270 for onsite calibration in various GIS’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 19481953.
    2. 2)
      • 28. Florkowski, M., Florkowska, B., ‘Wavelet-based partial discharge image denoising’, IET Gener. Transm. Distrib., 2007, 1, (2), pp. 340347.
    3. 3)
      • 29. Li, J., Cheng, C., Jiang, T., et al: ‘Wavelet denoising of partial discharge signals based on genetic adaptive threshold estimation’, IEEE Trans. Dielectr. Insul., 2012, 19, (2), pp. 543549.
    4. 4)
      • 26. Yoshida, M., Kojima, H., Hayakawa, N.: ‘Evaluation of UHF method for partial discharge measurement by simultaneous observation of UHF signal and current pulse waveforms’, IEEE Trans. Dielectr. Insul., 2011, 18, (2), pp. 425431.
    5. 5)
      • 24. Hong, V.P.N., Bao, T.P.: ‘Void discharge behaviours as a function of cavity size and voltage waveform under very low-frequency excitation’, High Volt., 2018, 3, (2), pp. 96102.
    6. 6)
      • 21. Qi, B., Li, C., Hao, Z., et al: ‘Surface discharge initiated by immobilized metallic particles attached to gas insulated substation insulators: process and features’, IEEE Trans. Dielectr. Insul., 2011, 18, (3), pp. 792800.
    7. 7)
      • 17. Gao, W., Ding, D., Liu, W.: ‘Research on the typical partial discharge using the UHF detection method for GIS’, IEEE Trans. Power Delivery, 2011, 26, (4), pp. 26212629.
    8. 8)
      • 2. Ueta, G., Wada, J., Okabe, S., et al: ‘Insulation performance of three types of micro-defects in inner epoxy insulators’, IEEE Trans. Dielectr. Insul., 2012, 19, (2), pp. 947954.
    9. 9)
      • 15. Shi, M., Han, X., Zhang, X., et al: ‘Effect of disconnector and high-voltage conductor on propagation characteristics of PD-induced UHF signals’, High Volt., 2018, 3, (3), pp. 187192.
    10. 10)
      • 5. Alvarez, F., Garnacho, F., Ortego, J., et al: ‘Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment’, Sensors, 2015, 15, (4), pp. 73607387.
    11. 11)
      • 1. Tanaka, H., Tanahashi, D., Baba, Y., et al: ‘Finite-difference time-domain simulation of partial discharges in a gas insulated switchgear’, High Volt., 2016, 1, (1), pp. 5256.
    12. 12)
      • 7. Kurrer, R., Feser, K., ‘The application of ultra-high-frequency partial discharge measurements to gas-insulated substations’, IEEE Trans. Power Deliv., 1998, 13, (2), pp. 777782.
    13. 13)
      • 22. Okabe, S., Yamagiwa, T., Okubo, H.: ‘Detection of harmful metallic particles inside gas insulated switchgear using UHF sensor’, IEEE Trans. Dielectr. Insul., 2008, 15, (3), pp. 701709.
    14. 14)
      • 18. Okabe, S., Ueta, G., Hama, H., et al: ‘New aspects of UHF PD diagnostics on gas-insulated systems’, IEEE Trans. Dielectr. Insul., 2014, 21, (5), pp. 22452258.
    15. 15)
      • 32. Fu, Y., Yang, S., Zou, X., et al: ‘Similarity of gas discharge in low-pressure argon gaps between two plane-parallel electrodes’, High Volt., 2016, 1, (2), pp. 8689.
    16. 16)
      • 9. Ma, G., Zhou, H., Zhang, M., et al: ‘A high sensitivity optical fiber sensor for GIS partial discharge detection’, IEEE Sens. J., 2019, 19, (20), pp. 92359243.
    17. 17)
      • 10. Tang, J., Yang, X., Yang, D., et al: ‘Using SF6 decomposed component analysis for the diagnosis of partial discharge severity initiated by free metal particle defect’, Energies, 2017, 10, (8), pp. 11191136.
    18. 18)
      • 12. Xu, Y., Liu, W., Gao, W., et al: ‘Comparison of PD detection methods for power transformers – their sensitivity and characteristics in time and frequency domain’, IEEE Trans. Dielectr. Insul., 2016, 23, (5), pp. 29252932.
    19. 19)
      • 8. Li, J., Han, X., Liu, Z., et al: ‘A novel GIS partial discharge detection sensor with integrated optical and UHF methods’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 20472049.
    20. 20)
      • 13. Gao, W., Ding, D., Liu, W., et al: ‘Investigation of the evaluation of the PD severity and verification of the sensitivity of partial-discharge detection using the UHF method in GIS’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 3847.
    21. 21)
      • 23. Zhang, L., Han, X., Li, J.: ‘Partial discharge detection and analysis of needle-plane defect in SF6 under negative oscillating lightning impulse voltage based on UHF method’, IEEE Trans. Dielectr. Insul., 2017, 24, (1), pp. 296303.
    22. 22)
      • 6. Tenbohlen, S., Denissov, D., Hoek, S.M., et al: ‘Partial discharge measurement in the ultra-high frequency (UHF) range’, IEEE Trans. Dielectr. Insul., 2008, 15, (6), pp. 15441552.
    23. 23)
      • 16. Qi, B., Li, C., Xing, Z., et al: ‘Partial discharge initiated by free moving metallic particles on GIS insulator surface: severity diagnosis and assessment’, IEEE Trans. Dielectr. Insul., 2014, 21, (2), pp. 766774.
    24. 24)
      • 25. Xu, Y., Cheng, J., Liu, W., et al: ‘Evaluation of the UHF method based on the investigation of a partial discharge case in post insulators’, IEEE Trans. Dielectr. Insul., 2017, 24, (6), pp. 36693676.
    25. 25)
      • 19. Gao, W., Ding, D., Liu, W., ‘Analysis of the intrinsic characteristics of the partial discharge induced by typical defects in GIS’, IEEE Trans. Dielectr. Insul., 2008, 15, (3), pp. 701709.
    26. 26)
      • 30. Umemura, T., Nakamura, S., Hikita, M., et al: ‘Partial discharges of small-air-gap in cast-resin insulation system’, IEEE Trans. Dielectr. Insul., 2013, 20, (1), pp. 255261.
    27. 27)
      • 4. Schichler, U., Koltunowicz, W., Endo, F., et al: ‘Risk assessment on defects in GIS based on PD diagnostics’, IEEE Trans. Dielectr. Insul., 2013, 20, (6), pp. 21652172.
    28. 28)
      • 14. Schichler, U., Koltunowicz, W., Gautschi, D., et al: ‘UHF partial discharge detection system for GIS: application guide for sensitivity verification’, IEEE Trans. Dielectr. Insul., 2016, 23, (3), pp. 13131321.
    29. 29)
      • 31. Li, C., Lin, C., Chen, G., et al: ‘Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviours’, Appl. Phys. Lett., 2019, 114, (20), p. 202904.
    30. 30)
      • 3. Okubo, H., Kato, T., Nayakawa, N., et al: ‘Temporal development of partial discharge and its application to breakdown prediction in SF6 gas’, IEEE Trans. Power Deliv., 1998, 13, (2), pp. 440445.
    31. 31)
      • 11. Judd, M.D., Farish, O., Hamptom, B.F., ‘The excitation of UHF signals by partial discharges in GIS’, IEEE Trans. Dielectr. Insul., 1996, 3, (2), pp. 213228.
    32. 32)
      • 20. Guvvala, N., Sarathi, R.: ‘Partial discharge activity due to particle movement in SF6 gas filled electrode gap under different voltage profiles’, IEEE Trans. Dielectr. Insul., 2018, 25, (4), pp. 14291438.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0261
Loading

Related content

content/journals/10.1049/hve.2019.0261
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading