access icon openaccess Influence regularity of O2 on dielectric and decomposition properties of C4F7N–CO2–O2 gas mixture for medium-voltage equipment

Fluorinated nitrile (C4F7N) gas mixture has been introduced as the most promising candidate to replace sulfur hexafluoride using in gas-insulated equipment. In this study, the authors explored the influence of oxygen on the dielectric and decomposition properties of C4F7N–CO2–O2 gas mixture. The authors found that the dielectric strength of the C4F7N–CO2–O2 gas mixture with 2, 4, 6, 8 and 10% O2 was increased by 4.85%, 6.49%, 7.70%, 3.21% and 2.74% compared with C4F7N–CO2. The addition of 2–6% O2 to the C4F7N–CO2 gas mixture could effectively reduce the content of most of the decomposition by-products such as CF4, CO, C2F6, C3F6, C3F8, CF3CN, C2F5CN, (CN)2. While high content of oxygen (>6%) results in higher decomposition of C4F7N, which has a negative effect on the stability of C4F7N gas mixture. Generally, it is recommended to add 2–6% O2 in the C4F7N–CO2 gas mixture to improve its insulation properties as well as inhibit the decomposition of C4F7N in the discharge for medium-voltage engineering application.

Inspec keywords: power apparatus; gas mixtures; sulphur compounds; electric strength; decomposition; gas insulated switchgear

Other keywords: C3F8; C3F6; decomposition properties; fluorinated nitrile gas mixture; C4F7N–CO2–O2 gas mixture; dielectric properties; insulation properties; C4F7N; CF4; C2F6; gas-insulated equipment; medium-voltage equipment; C2F5CN; O2; CO

Subjects: Gaseous insulation, breakdown and discharges; Power equipment manufacturing; Switchgear

References

    1. 1)
      • 27. Li, Y., Zhang, X., Chen, Q., et al: ‘Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum’, Corr. Sci., 2019, 153, pp. 3246.
    2. 2)
      • 30. Fu, Y., Wang, X., Yang, A., et al: ‘The decomposition mechanism of C4F7N-Cu gas mixtures’, AIP Adv., 2019, 9, (11), p. 115216.
    3. 3)
      • 6. Li, Y., Zhang, X., Tian, S., et al: ‘Insight into the decomposition mechanism of C6F12O-CO2 gas mixture’, Chem. Eng. J., 2019, 360, pp. 929940.
    4. 4)
      • 5. Zhong, L., Wang, J., Wang, X., et al: ‘Calculation of electron-impact ionization cross sections of perfluoroketone (PFK) molecules CxF2xO (x = 1–5) based on binary-encounter-bethe (BEB) and deutsch-märk (DM) methods’, Plasma Sources Sci. Technol., 2018, 27, (9), p. 095005.
    5. 5)
      • 26. Li, Y., Zhang, X., Zhang, J., et al: ‘Thermal compatibility between perfluoroisobutyronitrile-CO2 gas mixture with copper and aluminum’, IEEE. Access., 2019, 7, pp. 1979219800.
    6. 6)
      • 28. Wu, Y., Wang, C., Sun, H., et al: ‘Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients’, J. Phys. D: Appl. Phys., 2018, 51, (15), p. 55206.
    7. 7)
      • 29. Zhong, L., Wang, J., Xu, J., et al: ‘Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N–N2 and C4F7N–CO2 arc plasmas’, Plasma Chem. Plasma Process., 2019, 39, (6), pp. 118.
    8. 8)
      • 4. Fu, Y., Rong, M., Yang, K., et al: ‘Calculated rate constants of the chemical reactions involving the main by-products SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment’, J. Phys. D. Appl. Phys., 2016, 49, (15), p. 155502.
    9. 9)
      • 12. Nechmi, H.E., Beroual, A., Girodet, A., et al: ‘Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 25872593.
    10. 10)
      • 21. Li, C., Zhang, B., Yang, T., et al: ‘Thermal decomposition characteristics and kinetic analysis of C4F7N/CO2 gas mixture’, J. Phys. D: Appl. Phys., 2020, 53, p. 055502.
    11. 11)
      • 42. Wada, J., Ueta, G., Okabe, S., et al: ‘Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 838847.
    12. 12)
      • 23. Li, Y., Zhang, X., Xiao, S., et al: ‘Decomposition properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6’, Ind. Eng. Chem. Res., 2018, 57, (14), pp. 51735182.
    13. 13)
      • 31. Meyer, F., Kieffel, Y.: ‘Application of Fluoronitrile/CO2/O2 mixtures in high voltage products to lower the environmental footprint’, CIGRE reports, 2018.
    14. 14)
      • 16. Zhang, T., Zhou, W., Zheng, Y., et al: ‘Insulation properties of C4F7N/CO2 mixtures under non-uniform electric field’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (6), pp. 17471754.
    15. 15)
      • 2. Pan, C., Chen, G., Tang, J., et al: ‘Numerical modelling of partial discharges in a solid dielectric-bounded cavity: A review’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 9811000.
    16. 16)
      • 32. Radisavljevic, B., Stoller, P.C., Doiron, C. B., et al: ‘Switching performance of alternative gaseous mixtures in high-voltage circuit breakers’. 20th Int. Symp. on High Voltage Engineering, Buenos Aires, Argentina, 2017.
    17. 17)
      • 37. Halgren, T.A., Lipscomb, W.N.: ‘The synchronous-transit method fordetermining reaction pathways and locating molecular transition states’, Chem. Phys. Lett., 1977, 49, pp. 225232.
    18. 18)
      • 43. Zhang, B., Li, C., Xiong, J., et al: ‘Decomposition characteristics of C4F7N/CO2 mixture under AC discharge breakdown’, AIP Adv., 2019, 9, (11), p. 115212.
    19. 19)
      • 18. Fu, Y., Yang, A., Wang, X., et al: ‘Theoretical study of the decomposition mechanism of C4F7N’, J. Phys. D. Appl. Phys., 2019, 52, (24), p. 245203.
    20. 20)
      • 9. Lutz, B., Juhre, K., Kuschel, M., et al: ‘Behavior of gaseous dielectrics with low global warming potential considering partial discharges and electric arcing’. CIGRE Winnipeg Colloquium, Winnipeg, Canada, 2017.
    21. 21)
      • 45. Fu, Y., Yang, A., Wang, X., et al: ‘Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment’, J. Phys. D. Appl. Phys., 2016, 49, (38), p. 385203.
    22. 22)
      • 35. Zhang, X., Chen, Q., Zhang, J., et al: ‘Experimental study on power frequency breakdown characteristics of C4F7N/CO2 gas mixture under quasi-homogeneous electric field’, IEEE. Access., 2019, 7, pp. 1910019108.
    23. 23)
      • 33. Lindner, C., Gautsch, D.: ‘Application of a fluoronitrile gas in a 123 kV GIS pilot substation’, CIGRE reports, 2018.
    24. 24)
      • 40. Li, X., Zhao, H., Jia, S., et al: ‘Prediction of the dielectric strength for c-C4F8 mixtures with CF4, CO2, N2, O2 and air by Boltzmann equation analysis’, J. Phys. D: Appl. Phys., 2014, 47, (42), p. 425204.
    25. 25)
      • 22. Zhang, X., Li, Y., Xiao, S., et al: ‘Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge’, J. Phys. D: Appl. Phys., 2017, 50, (32), p. 325201.
    26. 26)
      • 36. Perdew, J.P., Burke, K., Ernzerhof, M.: ‘Generalized gradient approximation made simple’, Phys. Rev. Lett., 1996, 77, pp. 38653868.
    27. 27)
      • 38. Uchii, A.M.T., Koshizuka, T., Kawano, H.: ‘Thermal interruption capabilities of CO2 gas and CO2-based gas mixtures’. Proc. 18th Int. Conf. on Gas Discharges and Their Applications, Greifswald, Germany, 2010, pp. 7881.
    28. 28)
      • 1. Khan, B., Saleem, J., Khan, F., et al: ‘Analysis of the dielectric properties of R410A gas as an alternative to SF6 for high-voltage applications’, High Volt., 2019, 4, (1), pp. 4148.
    29. 29)
      • 11. Pohlink, K., Kieffel, Y., Owens, J.G., et al: ‘Characteristics of a fluoronitrile/CO2 mixture-an alternative to SF6’. Cigre Session, Paris, France, 2016.
    30. 30)
      • 17. Wang, C., Ai, X., Zhang, Y., et al: ‘Decomposition products and formation path of C3F7CN/CO2 mixture with suspended discharge’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (6), pp. 19491955.
    31. 31)
      • 34. Kristoffersen, M., Endre, T., Saxegaard, M., et al: ‘Ring main units with eco-efficient gas mixtures: field experience’, CIRED-Open Access Proc. J., 2017, 1, pp. 412415.
    32. 32)
      • 39. Zhao, H., Tian, Z., Deng, Y., et al: ‘Study of the dielectric breakdown properties of CO2–O2 mixtures by considering electron detachments from negative ions’, J. Appl. Phys., 2017, 122, (23), p. 233303.
    33. 33)
      • 14. Zhang, B., Uzelac, N., Cao, Y.: ‘Fluoronitrile/CO2 mixture as an eco-friendly alternative to SF6 for medium voltage switchgears’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 13401350.
    34. 34)
      • 25. Simka, P., Doiron, C. B., Scheel, S., et al: ‘Decomposition of alternative gaseous insulation under partial discharge’, Int. Symp. High Vol. Eng. (ISHVE)’, 2016, 1, pp. 361364.
    35. 35)
      • 24. Li, Y., Zhang, X., Zhang, J., et al: ‘Study on the thermal decomposition characteristics of C4F7N-CO2 mixture as eco-friendly gas insulating medium’, High Volt., 2020, (in press, DOI: 10.1049/hve.2019.0032).
    36. 36)
      • 13. Wang, C., Cheng, Y., Tu, Y., et al: ‘Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 13511356.
    37. 37)
      • 41. Rong, M., Sun, H., Yang, F., et al: ‘Influence of O2 on the dielectric properties of CO2 at the elevated temperatures’, Phys. Plasma, 2014, 21, (11), p. 112117.
    38. 38)
      • 20. Chen, L., Zhang, B., Xiong, J., et al: ‘Decomposition mechanism and kinetics of iso-C4 perfluoronitrile (C4F7N) plasmas’, J. Appl. Phys., 2019, 126, (16), p. 163303.
    39. 39)
      • 15. Li, Y., Zhang, X., Zhang, J., et al: ‘Experimental study on the partial discharge and AC breakdown properties of C4F7N/CO2 mixture’, High Volt., 2019, 4, (1), pp. 1217.
    40. 40)
      • 3. Cui, H., Zhang, X., Zhang, G., et al: ‘Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method’, Appl. Surf. Sci., 2019, 470, pp. 10351042.
    41. 41)
      • 19. Zhao, M., Han, D., Zhou, Z., et al: ‘Experimental and theoretical analysis on decomposition and by-product formation process of (CF3)2CFCN mixture’, AIP Adv., 2019, 9, (10), p. 105204.
    42. 42)
      • 44. Juntao, J., Dengming, X., Xiaoling, Z., et al: ‘Analysis of the molecules structure and vertical electron affinity of organic gas impact on electric strength’, Plasma Sci. Tech., 2016, 18, (5), p. 554.
    43. 43)
      • 10. Kieffel, Y., Irwin, T., Ponchon, P., et al: ‘Green gas to replace SF6 in electrical grids’, IEEE Power Energy Mag., 2016, 14, (2), pp. 3239.
    44. 44)
      • 7. Li, X., Zhao, H., Murphy, A.B..: ‘SF6-alternative gases for application in gas-insulated switchgear’, J. Phys. D. Appl. Phys., 2018, 51, (15), p. 153001.
    45. 45)
      • 8. Rabie, M., Franck, C.M.: ‘Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6’, Environ. Sci. Technol., 2018, 52, (2), pp. 369380.
    46. 46)
      • 47. Ficheux, A., Luescher, R., Laruelle, E., et al: ‘SF6 alternative–what to learn from the high voltage experience’. 25th Int. Conf. on Electricity Distribution, Madrid, Spain, 2019.
    47. 47)
      • 46. Uchii, T., Hoshina, Y., Kawano, H., et al: ‘Fundamental research on SF6-free gas insulated switchgear adopting CO2 gas and its mixtures’. Proc. of Int. Symp. on Eco Topia Science (ISETSO7), Nagoya, Aichi, Japan, 2007, pp. 516520.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0219
Loading

Related content

content/journals/10.1049/hve.2019.0219
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading