Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Dynamics of surface charge and electric field distributions on basin-type insulator in GIS/GIL due to voltage polarity reversal

In this study, a simulation model of surface charge accumulation has been established. The model considers three accumulation ways, i.e. electrical conduction within the gas, through insulator volume and along the insulator surface. The generation, diffusion, drift and recombination of charge carriers are also taken into account. Based on it, the influence of polarity reversal, reversal time on surface charge and electric field distribution on a basin-type insulator are studied. The polarity of the surface charges and the direction of the electric field change after the voltage polarity reversal. When the preload voltage is equal to reversal voltage, the surface charge and the electric field distributions at steady state before and after voltage polarity reversal are all the same with opposite sign, and not affected by the reversal time. However, the time to reach the steady state varies with different reversal time. The steady-state surface charge and electric field increased with the rise of reversal voltage. The transient normal and tangential electric field would not exceed the value of the steady state, which means voltage polarity reversal has no additional influence on insulation performance. This research can provide guidance to the design and manufacture of DC GIS/GIL.

References

    1. 1)
      • 25. Tschentscher, M., Franck, C.M.: ‘Microscopic charge provision at interfaces of gas-insulated (HVDC/HVAC) systems’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 11861194.
    2. 2)
      • 12. Du, B., Jiang, J., Li, J., et al: ‘Effects of ZnO magnetron sputtering on surface charge and flashover voltage of oil-impregnated paper’, High Volt., 2019, 4, (4), pp. 308315.
    3. 3)
      • 2. Zhang, B., Qi, Z., Zhang, G.: ‘Charge accumulation patterns on spacer surface in HVDC gas-insulated system: dominant uniform charging and random charge speckles’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 12291238.
    4. 4)
      • 7. Pan, C., Tang, J., Wang, D., et al: ‘Influence of temperature on the characteristics of surface charge accumulation on PTFE model insulators’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 12101219.
    5. 5)
      • 9. Kordi, B., Amer, M., Laninga, J., et al: ‘A new experimental study on the DC flashover voltage of polymer insulators: A combined effect of surface charges and air humidity’, High Volt., 2019, 4, (4), pp. 316323.
    6. 6)
      • 41. Codina, R.: ‘Comparison of some finite element methods for solving the diffusion-convection-reaction equation’, Comput. Methods Appl. Mech. Eng., 1998, 156, (1–4), pp. 185210.
    7. 7)
      • 30. Schueller, M., Gremaud, R., Doiron, C.B., et al: ‘Micro discharges in HVDC gas insulated systems’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 28792888.
    8. 8)
      • 36. Ma, G., Zhou, H., Li, C., et al: ‘Designing epoxy insulators in SF6-filled DC-GIL with simulations of ionic conduction and surface charging’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 33123320.
    9. 9)
      • 26. Iwabuchi, H., Matsuoka, S., Kumada, A., et al: ‘Influence of tiny metal particles on charge accumulation phenomena of GIS model spacer in high-pressure SF6 gas’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (5), pp. 18951901.
    10. 10)
      • 35. Men, R., Lei, Z., Han, T., et al: ‘Effect of long-term fluorination on surface electrical performance of ethylene propylene rubber’, High Volt., 2019, 4, (4), pp. 339344.
    11. 11)
      • 3. Xue, J., Wang, H., Liu, Y., et al: ‘Surface charge distribution patterns of a truncated cone-type spacer for high-voltage direct current gas-insulated metal-enclosed transmission line/gas-insulated metal-enclosed switchgear’, IET Sci. Meas. Technol., 2018, 12, (4), pp. 436442.
    12. 12)
      • 24. Liu, Y., Wu, G., Gao, G., et al: ‘Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages’, Plasma Sci. Technol., 2019, 21, (5), p. 055501.
    13. 13)
      • 33. Qi, B., Gao, C., Lv, Y., et al: ‘The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism’, J. Phys. D. Appl. Phys., 2018, 51, (24), p. 245303.
    14. 14)
      • 39. Georghiou, G.E., Morrow, R., Metaxas, A.C.: ‘An improved finite-element flux-corrected transport algorithm’, J. Comput. Phys., 1999, 148, (2), pp. 605620.
    15. 15)
      • 29. Liu, Q., Yan, J.D., Hao, L., et al: ‘Charge transport and accumulation around a spencer insulator for application in HVDC wall bushing’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (1), pp. 281293.
    16. 16)
      • 21. Nakanishi, K., Yoshioka, A., Arahata, Y., et al: ‘Surface charging on epoxy spacer at DC stress in compressed SF6 gas’, IEEE Trans. Power Appar. Syst., 1983, PSA-102, (12), pp. 39193927.
    17. 17)
      • 28. Kindersberger, J., Lederle, C.: ‘Surface charge decay on insulators in air and sulfur hexafluoride – part II: measurements’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 949957.
    18. 18)
      • 32. Volpov, E.: ‘Dielectric strength coordination and generalized spacer design rules for HVAC/DC SF6 gas insulated systems’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (6), pp. 949963.
    19. 19)
      • 37. De Lorenzi, A., Grando, L., Pesce, A., et al: ‘Modeling of epoxy resin spacers for the 1 MV DC gas insulated line of ITER neutral beam injector system’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (1), pp. 7787.
    20. 20)
      • 17. Winter, A., Kindersberger, J.: ‘Surface charge accumulation on insulating plates in SF6 and the effect on DC and AC breakdown voltage of electrode arrangements’. Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 2002, pp. 757761.
    21. 21)
      • 1. Sakamuri, J.N., Rather, Z.H., Rimez, J., et al: ‘Coordinated voltage control in offshore HVDC connected cluster of wind power plants’, IEEE Trans Sustain. Energy, 2016, 7, (4), pp. 15921601.
    22. 22)
      • 31. Lutz, B., Kindersberger, J.: ‘Surface charge accumulation on cylindrical polymeric model insulators in air: simulation and measurement’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (6), pp. 20402048.
    23. 23)
      • 13. Qi, B., Dai, Q., Li, C., et al: ‘The influence of polarity reversal time on interface charges in oil-impregnated pressboard insulation under non-uniform electric field’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (5), pp. 15981604.
    24. 24)
      • 38. Lee, S.-H., Lee, S.-Y., Chung, Y.-K., et al: ‘Finite-element analysis of corona discharge onset in air with artificial diffusion scheme and under Fowler–Nordheim electron emission’, IEEE Trans. Magn., 2007, 43, (4), pp. 14531456.
    25. 25)
      • 5. Li, C., Lin, C., Chen, G., et al: ‘Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors’, Appl. Phys. Lett., 2019, 114, (20), p. 202904.
    26. 26)
      • 19. Li, C., Hu, J., Lin, C., et al: ‘Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators’, J. Phys. D. Appl. Phys., 2017, 50, (6), p. 65301.
    27. 27)
      • 27. Kindersberger, J., Lederle, C.: ‘Surface charge decay on insulators in air and sulfur hexafluoride – part I: simulation’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 941948.
    28. 28)
      • 22. Kennedy, W.N., Crichton, C.C., Cillies, D.A., et al: ‘Recommended dielectric tests and test procedures for converter transformers and smoothing reactors’, IEEE Trans. Power Deliv., 1986, 1, (3), pp. 161166.
    29. 29)
      • 15. Wang, S., Luo, S., Tu, Y., et al: ‘Effect of polarity reversal on space charge properties of CB/LDPE composite under DC field’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 13491354.
    30. 30)
      • 11. Du, B.X., Zhang, J.G., Liu, D.S.: ‘Interface charge behavior of multi-layer oil–paper insulation under DC and polarity reversal voltages’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 26282638.
    31. 31)
      • 42. Volpov, E.: ‘Electric field modeling and field formation mechanism in HVDC SF6 gas insulated systems’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (2), pp. 204215.
    32. 32)
      • 20. Du, B.X., Li, J.: ‘Effects of ambient temperature on surface charge and flashover of heat-shrinkable polymer under polarity reversal voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 11901197.
    33. 33)
      • 14. Fu, M., Dissado, L.A., Chen, G., et al: ‘Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (3), pp. 851860.
    34. 34)
      • 10. Hasegawa, T., Hatano, M., Yamaji, K., et al: ‘Dielectric strength of transformer insulation at DC polarity reversal’, IEEE Trans. Power Deliv., 1997, 12, (4), pp. 15261531.
    35. 35)
      • 23. Winter, A., Kindersberger, J.: ‘Transient field distribution in gas-solid insulation systems under DC voltages’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 116128.
    36. 36)
      • 16. Abou-Dakka, M., Bulinski, A., Bamji, S.S.: ‘Effect of additives on the performance of cross-linked polyethylene subjected to long term single and periodically reversed polarity DC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 654663.
    37. 37)
      • 8. Qi, B., Gao, C., Li, C., et al: ‘The influence of surface charge accumulation on flashover voltage of GISGIL basin insulator under various voltage stresses’, Int. J. Electr. Power Energy Syst., 2019, 105, pp. 514520.
    38. 38)
      • 18. Kumara, S., Alam, S., Hoque, I.R., et al: ‘DC flashover characteristics of a polymeric insulator in presence of surface charges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 10841090.
    39. 39)
      • 6. Lin, C., Li, Q., Li, C., et al: ‘Novel HVDC spacers by adaptively controlling surface charges--part iii: industrialization prospects’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 12591266.
    40. 40)
      • 40. Tran, T.N., Golosnoy, I.O., Lewin, P.L., et al: ‘Numerical modelling of negative discharges in air with experimental validation’, J. Phys. D. Appl. Phys., 2010, 44, (1), p. 15203.
    41. 41)
      • 4. Pan, C., Chen, G., Tang, J., et al: ‘Numerical modeling of partial discharges in a solid dielectric-bounded cavity a review’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 9811000.
    42. 42)
      • 34. Gao, Y., Yuan, Y., Chen, L., et al: ‘Direct fluorination induced variation in interface discharge behavior between polypropylene and silicone rubber under AC voltage’, IEEE Access, 2018, 6, pp. 2390723917.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0217
Loading

Related content

content/journals/10.1049/hve.2019.0217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address