access icon openaccess Investigation on space charge and charge trap characteristics of gamma-irradiated epoxy micro–nano composites

Epoxy nano–micro composite specimen prepared with micro silica and ion trapping nanoparticle, by shear mixing process, was exposed to gamma radiation and its performance for space charge and charge trap characteristics were analysed. The threshold for space charge accumulation of epoxy nanocomposites reduces and rate of space charge accumulation increases with an increase in dosage of gamma irradiation. The average growth of space charge density during poling and charge decay rate during depoling are relatively higher for gamma-irradiated specimens than the virgin specimen. The initial surface potential has a marginal reduction with increase in the dosage of gamma radiation, but the surface potential decay rate has increased significantly. Trap distribution characteristics indicate more number of shallow traps and increase in charge mobility after irradiation. The relative permittivity and loss tangent of the specimens have high impact due to gamma irradiation. The activation energy calculated from DC conductivity by Arrhenius law reduces with increment in radiation dose. Laser-induced breakdown spectroscopy reflected no change in elemental composition with gamma-irradiated specimen. The variation in plasma temperature and ion line to atomic line intensity ratio with dosage of gamma radiation have direct correlation to the Vickers hardness number of the specimens.

Inspec keywords: Vickers hardness; spectrochemical analysis; carrier mobility; resins; filled polymers; space charge; electrical conductivity; nanomechanics; nanoparticles; gamma-ray effects; permittivity; nanocomposites; electron traps; silicon compounds; dielectric losses; surface potential; mixing

Other keywords: gamma-irradiated specimen; radiation dose; ion trapping nanoparticle; elemental composition; charge decay rate; gamma-irradiated epoxy microcomposites; trap distribution characteristics; plasma temperature; poling; relative permittivity; laser-induced breakdown spectroscopy; charge mobility; space charge density; gamma-irradiated epoxy nanocomposites; shear mixing process; microsilica; charge trap characteristics; Arrhenius law; ion line-atomic line intensity ratio; loss tangent; DC conductivity; surface potential decay rate; SiO2; activation energy; space charge accumulation; Vickers hardness number

Subjects: Other methods of nanofabrication; Dielectric breakdown and space-charge effects; Electrical properties of composite materials (thin films, low-dimensional and nanoscale structures); Dielectric permittivity; Dielectric loss and relaxation; Low-field transport and mobility; piezoresistance (semiconductors/insulators); Electromagnetic radiation spectrometry (chemical analysis); Fatigue, embrittlement, and fracture; Gamma ray effects; Fatigue, brittleness, fracture, and cracks; Charge carriers: generation, recombination, lifetime, and trapping (semiconductors/insulators)

References

    1. 1)
      • 33. Liu, P., Ning, X., Peng, Z., et al: ‘Effect of temperature on space charge characteristics in epoxy resin’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 6571.
    2. 2)
      • 39. Baziard, Y., Breton, S., Toutain, S., et al: ‘Dielectric properties of aluminium powder-epoxy resin composites’, Eur. Polym. J., 1988, 24, (6), pp. 521526.
    3. 3)
      • 14. Imai, T., Sawa, F., Nakano, T., et al: ‘Effects of nano-and micro-filler mixture on electrical insulation properties of epoxy based composites’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (2), pp. 319326.
    4. 4)
      • 5. Sun, W., Bowler, N.: ‘Dielectric properties of silanized-silicon/epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 20952101.
    5. 5)
      • 15. Mishra, P., Desai, B.M.A., Vasa, N.J., et al: ‘Understanding the performance of gamma-ray-irradiated epoxy nanocomposites’, Micro Nano Lett., 2019, 14, (1), pp. 107112.
    6. 6)
      • 28. Aberkane, S.M., Bendib, A., Yahiaoui, K., et al: ‘Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique’, Appl. Surf. Sci., 2014, 301, pp. 225229.
    7. 7)
      • 42. Gao, Y., Du, B.X.: ‘Effect of Gamma-ray irradiation on permittivity and dielectric loss of polymer insulating materials’. Int. Conf. on High Voltage Engineering and Application, Shanghai, 2012, pp. 229232.
    8. 8)
      • 3. Du, B.X., Guo, Y.G.: ‘Tracking resistance of epoxy/Al2O3 nanocomposites under DC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 109116.
    9. 9)
      • 44. Peng, W., Huang, X., Yu, J., et al: ‘Electrical and thermo-physical properties of epoxy/aluminum nitride nanocomposites: effects of nanoparticle surface modification’, Compos. A: Appl. Sci. Manuf., 2010, 41, (9), pp. 12011209.
    10. 10)
      • 27. Zhang, S., Wang, X., He, M., et al: ‘Laser-induced plasma temperature’, Spectrochim. Acta, Part B, 2014, 97, pp. 1333.
    11. 11)
      • 22. Das, S., Gupta, N.: ‘Effect of ageing on space charge distribution in homogeneous and composite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 541547.
    12. 12)
      • 24. Chen, G., Hao, M., Xu, Z., et al: ‘Review of high voltage direct current cables’, CSEE J. Power Energy Syst., 2015, 1, (2), pp. 921.
    13. 13)
      • 35. Simmons, J.G., Tam, M.C.: ‘Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions’, Phys. Rev. B, 1973, 7, (8), pp. 37063713.
    14. 14)
      • 21. Qiang, D., Wang, Y., Wang, X., et al: ‘The effect of filler loading ratios and moisture on DC conductivity and space charge behaviour of SiO2 and hBN filled epoxy nanocomposites’, J. Phys. D: Appl. Phys., 2019, 52, (39), p. 395502.
    15. 15)
      • 47. Meyers, M.A., Chawla, K.K.: ‘Mechanical behavior of materials’ (Cambridge University Press, Cambridge, UK, 2008).
    16. 16)
      • 38. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    17. 17)
      • 12. Tsekmes, I.A., Morshuis, P.H.F., Smit, J.J., et al: ‘Enhancing the thermal and electrical performance of epoxy micro composites with the addition of nanofillers’, IEEE Electr. Insul. Mag., 2015, 31, (3), pp. 3242.
    18. 18)
      • 16. Kraus, K.A., Phillips, H.O.: ‘Adsorption on inorganic materials I. Cation exchange properties of zirconium phosphate’, J. Am. Chem. Soc., 1956, 78, (3), pp. 694694.
    19. 19)
      • 25. Laghari, J.R., Hammoud, A.N.: ‘A brief survey of radiation effects on polymer dielectric’, IEEE Trans. Nucl. Sci., 1990, 37, (2), pp. 10761083.
    20. 20)
      • 2. Luo, P., Xu, M., Wang, S., et al: ‘Structural, dynamic mechanical and dielectric properties of mesoporous silica/epoxy resin nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 16851697.
    21. 21)
      • 17. Du, B.X., Xiao, M.: ‘Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 529536.
    22. 22)
      • 8. Du, B.X., Liang, H.C., Li, J., et al: ‘Temperature dependent surface potential decay and flashover characteristics of epoxy/SiC composites’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 631638.
    23. 23)
      • 4. Qiang, D., Wang, Y., Chen, G., et al: ‘Dielectric properties of epoxy silica and boron nitride nanocomposites and moisture/temperature influences’, IET Nanodielectrics, 2018, 1, (1), pp. 4859.
    24. 24)
      • 6. Dai, S., Zhang, T., Mo, S., et al: ‘Study on preparation, thermal conductivity, and electrical insulation properties of epoxy/AlN’, IEEE Trans. Appl. Super Cond., 2019, 29, (2), pp. 16.
    25. 25)
      • 7. Heid, T., Fréchette, M., David, E.: ‘Epoxy/BN micro-and submicro-composites: dielectric and thermal properties of enhanced materials for high voltage insulation systems’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 11761185.
    26. 26)
      • 20. Dong, J., Shao, Z., Wang, Y., et al: ‘Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 15371546.
    27. 27)
      • 13. Abdelkader, K., Pascal, R., Olivier, L., et al: ‘Dielectric relaxation and ionic conduction in 66% Silica/CW229–3/HW229–1 microcomposite’, Polym. Compos. B: Eng., 2015, 78, pp. 488496.
    28. 28)
      • 30. Alijagic-Jonuz, B.: ‘Dielectric properties and space charge dynamics of polymeric high voltage DC insulating materials’, PhD thesis, TU Delft, Delft University Press, 2007.
    29. 29)
      • 48. Cowpe, J.S., Moorehead, R.D., Moser, D., et al: ‘Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy’, Spectrochim. Acta, Part B, 2011, 66, (3–4), pp. 290294.
    30. 30)
      • 46. Fréchette, M., Preda, I., Castellon, J., et al: ‘Polymer composites with a large nanofiller content: a case study involving epoxy’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 434443.
    31. 31)
      • 29. Montanari, G.C., Fabiani, D.: ‘Evaluation of dc insulation performance based on space-charge measurements and accelerated life tests’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, (3), pp. 322328.
    32. 32)
      • 9. Liang, M., Wong, K.L.: ‘Improving the long-term performance of composite insulators use nanocomposite: a review’, Energy Proc., 2017, 110, pp. 168173.
    33. 33)
      • 37. Ishimoto, K., Kanegae, E., Ohki, Y., et al: ‘Superiority of dielectric properties of LDPE/MgO nanocomposites over microcomposites’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (6), pp. 17351742.
    34. 34)
      • 10. Huang, K.S., Nien, Y.H., Chen, J.S., et al: ‘Synthesis and properties of epoxy/TiO2 composite materials’, Polym. Compos., 2006, 27, (2), pp. 195200.
    35. 35)
      • 31. Chen, G., Fu, M.: ‘The influence of gamma irradiation on space charge in LDPE’. IEEE 8th Int. Conf. on Properties & applications of Dielectric Materials, Bali, Indonesia, 2006, pp. 131134.
    36. 36)
      • 1. Tanaka, T., Imai, T.: ‘Advanced nanodielectrics: fundamentals and applications’ (CRC Press, United States, 2017).
    37. 37)
      • 43. Jonscher, A. K.: ‘Dielectric relaxation in solids’ (London, UK, Chelsea Dielectrics Press Limited, 1996, 2nd Edn.).
    38. 38)
      • 49. Abdel-Salam, Z.A., Galmed, A.H., Tognoni, E., et al: ‘Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra’, Spectrochim. Acta, Part B, 2007, 62, (12), pp. 13431347.
    39. 39)
      • 32. Wang, S., Luo, S., Tu, Y., et al: ‘Effect of polarity reversal on space charge properties of CB/LDPE composite under DC field’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 13491354.
    40. 40)
      • 34. Gao, Y., Du, B.X.: ‘Effect of gamma-ray irradiation on surface charge accumulation of epoxy resin’, Polym. Mater. Sci. Eng., 2012, 28, (11), pp. 815825.
    41. 41)
      • 23. Chen, G., Davies, A.E., Banford, H.M.: ‘Influence of radiation environments on space charge formation in gamma-irradiated LDPE’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (6), pp. 882886.
    42. 42)
      • 36. Watson, P.K.: ‘The thermalization and trapping of electrons in polystyrene’, IEEE Trans. Electr. Insul., 1987, 2, pp. 129132.
    43. 43)
      • 11. Saha, D., Anisimov, A.G., Groves, R.M., et al: ‘Epoxy-hBN nanocomposites: a study on space charge behavior and effects upon material’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 17181725.
    44. 44)
      • 45. Wang, Z., Zhou, W., Dong, L., et al: ‘Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites’, J. Alloys Compd., 2016, 682, pp. 738745.
    45. 45)
      • 41. Smaoui, H., Arous, M., Guermazi, H., et al: ‘Study of relaxations in epoxy polymer by thermally stimulated depolarization current (TSDC) and dielectric relaxation spectroscopy (DRS)’, J. Alloy Compd., 2010, 489, (2), pp. 429436.
    46. 46)
      • 26. Wang, X., Hong, X., Chen, P., et al: ‘Surface hardness analysis of aged composite insulators via Laser-induced plasma Spectra characterization’, IEEE Trans. Plasma Sci., 2018, 47, (1), pp. 387394.
    47. 47)
      • 40. Couderc, H., Fréchette, M., Savoie, S., et al: ‘Dielectric and thermal properties of boron nitride and Silica epoxy composites’. IEEE Int. Symp. on Electrical Insulation, San Juan, 2012, pp. 6468.
    48. 48)
      • 19. Du, B.X., Li, A.: ‘Effects of DC and pulse voltage combination on surface charge dynamic behaviors of epoxy resin’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 20252033.
    49. 49)
      • 18. Llovera, P., Molinie, P.: ‘New methodology for surface potential decay measurements: application to study charge injection dynamics on polypropylene films’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (6), pp. 10491056.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0188
Loading

Related content

content/journals/10.1049/hve.2019.0188
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading