access icon openaccess Mode transition induced by back-breakdown of the gliding arc and its influence factors

Gliding arc is a mostly used non-equilibrium plasma generation method whose characteristic is affected by the back-breakdown phenomenon. Mode transition induced by back-breakdown of the gliding arc is studied in this work and effects of gas flow rate, applied voltage, electrode parameters on mode transition were studied. Experimental results show that there are two typical modes during the development of the gliding arc. Mode A comprises periodicitical development of the arc from the minimum gap breakdown to the longest extinguishment, while the arc in mode B continues to produce a back-breakdown at the ends of the electrodes. As the flow rate descends, the gliding arc gradually changes from mode A to B. It is the decrease of the arc velocity caused by lower flow rate leads to the occurrence of back-breakdown, which generates mode B. Smaller electrode opening angle, shorter length and wider minimum gap reduce the gliding speed, so that arc is more likely to enter mode B. As the applied voltage is increased, enhancing of the electric field strength on the breakdown path of the back-breakdown and thickening of the arc's diameter allow the gliding arc to enter mode B at a higher arc speed.

Inspec keywords: electrodes; plasma sources; plasma flow; arcs (electric)

Other keywords: nonequilibrium plasma generation method; arc velocity; mode transition; gliding arc; minimum gap breakdown; gas flow rate; electrode opening angle; electric field strength; electrode parameters; back-breakdown phenomenon; applied voltage; arc speed

Subjects: Plasma flow; magnetohydrodynamics; Plasma sources; Arcs and sparks

References

    1. 1)
      • 24. Mitsugi, F., Ohshima, T., Kawasaki, H., et al: ‘Gas flow dependence on dynamic behavior of serpentine plasma in gliding arc discharge system’, IEEE Trans. Plasma Sci., 2014, 42, (12), pp. 36813686.
    2. 2)
      • 14. Zhu, J., Gao, J., Ehn, A., et al: ‘Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge’, Appl. Phys. Let., 2015, 106, (4), pp. 111114.
    3. 3)
      • 25. Zhang, C., Shao, T., Yan, P., et al: ‘Nanosecond-pulse gliding discharges between point-to-point electrodes in open air’, Plasma Sour. Sci. Technol., 2014, 23, (3), p. 035004.
    4. 4)
      • 2. Zhang, R., Han, Q., Xia, Y., et al: ‘Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber’, Plasma Sci. Technol., 2017, 19, (10), pp. 7986.
    5. 5)
      • 1. Zita, E.: ‘Introduction to plasma physics with space and laboratory applications’, Plasma Phys. Control. Fusion, 2005, 47, (7), pp. 11091110.
    6. 6)
      • 8. Zhu, J., Ehn, A., Gao, J., et al: ‘Translational, rotational, vibrational and electron temperatures of a gliding arc discharge’, Opt. Express, 2017, 25, pp. 2024320257.
    7. 7)
      • 27. Belan, M.: ‘Plasma–gas flow interaction of a discharge normal to a bluff body wake’, IEEE Trans. Plasma Sci., 2014, 42, (9), pp. 21702178.
    8. 8)
      • 22. Zhang, C., Niu, Z., Ren, C., et al: ‘Factors influencing the discharge mode for microsecond-pulse gliding discharges at atmospheric pressure’, IEEE Trans. Diel. Elect. Insul., 2017, 24, (4), pp. 21482156.
    9. 9)
      • 3. Li, H., Zhang, X., Zhu, X., et al: ‘Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension’, High Volt., 2017, 2, (3), pp. 188189.
    10. 10)
      • 16. Richard, F., Cormier, J., Pellerin, S., et al: ‘Physical study of a gliding arc discharge’, J. Appl. Phys., 1996, 79, (5), pp. 22452250.
    11. 11)
      • 6. Zhang, R., Zhou, X., Xia, Y., et al: ‘Hydrophobicity improvement of contaminated HTV silicone rubber by atmospheric plasma jet treatment’, IEEE Trans. Diel. Elect. Insul., 2016, 23, (1), pp. 377384.
    12. 12)
      • 23. Potočňáková, L., Šperka, J., Zikán, P., et al: ‘Gliding arc in noble gases under normal and hypergravity conditions’, IEEE Trans. Plasma Sci., 2014, 42, (10), pp. 27242725.
    13. 13)
      • 5. Wang, S., Li, S., Li, J., et al: ‘Interfacial bonding enhancement of the RTV recoating with sandwiched contaminant by plasma jet’, High Volt., 2019, 4, pp. 16.
    14. 14)
      • 9. Li, S., Zhang, R., Wang, S., et al: ‘Plasma treatment to improve the hydrophobicity of contaminated silicone rubber – the role of LMW siloxanes’, IEEE Trans. Diel. Elect. Insul., 2019, 26, (2), pp. 416422.
    15. 15)
      • 21. Zhang, R., Luo, G.: ‘The mode of gliding arc discharge and its characteristics’. 2018 12th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, 2018, pp. 305310.
    16. 16)
      • 19. Kong, C., Gao, J., Zhu, J., et al: ‘Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge’, J. Appl. Phys., 2018, 123, (22), p. 223302.
    17. 17)
      • 15. Pellerin, S., Richard, F., Chapelle, J., et al: ‘Heat string model of bi-dimensional dc Gliding arc’, J. Phys. D Appl. Phys., 2000, 33, (19), pp. 24072419.
    18. 18)
      • 13. Zhu, J., Sun, Z., Li, Z., et al: ‘Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements’, J. Phys. D Appl. Phys., 2014, 47, (29), p. 295203.
    19. 19)
      • 7. Sun, Z., Zhu, J., Li, Z., et al: ‘Optical diagnostics of a gliding arc’, Opt. Expr., 2013, 21, (5), pp. 60286044.
    20. 20)
      • 4. Yang, Z., Song, H., Wang, W., et al: ‘Thermal characterisation of dielectric barrier discharge plasma actuation driven by radio frequency voltage at low pressure’, High Volt., 2018, 3, (2), pp. 154160.
    21. 21)
      • 18. Sun, S., Kolev, S., Wang, H., et al: ‘Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics’, Plasma Sour. Sci. Technol., 2017, 26, (1), p. 015003.
    22. 22)
      • 11. Bo, Z., Yan, J., Li, X., et al: ‘Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition’, J. Hazard. Mater., 2008, 155, (3), pp. 494501.
    23. 23)
      • 20. Zhang, C., Shao, T., Xu, J., et al: ‘A gliding discharge in open air sustained by high-voltage resonant AC power supply’, IEEE Trans. Plasma Sci., 2012, 40, (11), pp. 28432849.
    24. 24)
      • 10. Tu, X., Yu, L., Yan, J., et al: ‘Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow’, Phys. Plasmas, 2009, 16, (11), p. 113506.
    25. 25)
      • 17. Richard, F., Cormier, J., Pellerin, S., et al: ‘Gliding arcs fluctuations and arc root replacement’, High Temp. Mater. Proc., 1997, 1–2, pp. 239248.
    26. 26)
      • 12. Tu, X., Gallon, H., Whitehead, J.: ‘Dynamic behavior of an atmospheric argon Gliding arc plasma’, IEEE Trans. Plasma Sci., 2011, 39, (11), pp. 29002901.
    27. 27)
      • 26. He, L., Chen, Y., Liu, X., et al: ‘Discharge characteristic of atmospheric pressure AC gliding arc’, High Volt. Eng., 2016, 42, (6), pp. 19211928 (in Chinese).
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0162
Loading

Related content

content/journals/10.1049/hve.2019.0162
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading